
CommunicationCommunication

Layered Protocols (1)Layered Protocols (1)
Layers, interfaces, and protocols in the OSI model.

2-1

Layered Protocols (2)Layered Protocols (2)
A typical message as it appears on the network.

2-2

Data Link LayerData Link Layer

Discussion between a receiver and a sender in the data link layer.

2-3

ClientClient--Server TCPServer TCP

a) Normal operation of TCP.
b) Transactional TCP.

2-4

Middleware ProtocolsMiddleware Protocols

An adapted reference model for networked communication.

2-5

Conventional Procedure CallConventional Procedure Call

a) Parameter passing in a local procedure call: the stack before the call
to read

b) The stack while the called procedure is active

Client and Server StubsClient and Server Stubs
Principle of RPC between a client and server

program.

Steps of a Remote Procedure Steps of a Remote Procedure
CallCall1. Client procedure calls client stub in normal way

2. Client stub builds message, calls local OS
3. Client's OS sends message to remote OS
4. Remote OS gives message to server stub
5. Server stub unpacks parameters, calls server
6. Server does work, returns result to the stub
7. Server stub packs it in message, calls local OS
8. Server's OS sends message to client's OS
9. Client's OS gives message to client stub
10. Stub unpacks result, returns to client

Passing Value Parameters (1)Passing Value Parameters (1)
Steps involved in doing remote computation through

RPC
2-8

Passing Value Parameters (2)Passing Value Parameters (2)

a) Original message on the Pentium
b) The message after receipt on the SPARC
c) The message after being inverted. The little numbers in

boxes indicate the address of each byte

Parameter Specification and Stub Parameter Specification and Stub
GenerationGeneration

a) A procedure
b) The corresponding message.

DoorsDoors

The principle of using doors as IPC mechanism.

Asynchronous RPC (1)Asynchronous RPC (1)

a) The interconnection between client and server in a traditional
RPC

b) The interaction using asynchronous RPC

2-12

Asynchronous RPC (2)Asynchronous RPC (2)
A client and server interacting through two

asynchronous RPCs

Writing a Client and a ServerWriting a Client and a Server

The steps in writing a client and a server in DCE RPC.

2-14

Binding a Client to a ServerBinding a Client to a Server
Client-to-server binding in DCE.

2-15

Distributed ObjectsDistributed Objects

Common organization of a remote object with client-side proxy.

2-16

Binding a Client to an ObjectBinding a Client to an Object

a) (a) Example with implicit binding using only global references
b) (b) Example with explicit binding using global and local

references

Distr_object* obj_ref; //Declare a systemwide object reference
obj_ref = …; // Initialize the reference to a distributed object
obj_ref-> do_something(); // Implicitly bind and invoke a method

(a)

Distr_object objPref; //Declare a systemwide object reference
Local_object* obj_ptr; //Declare a pointer to local objects
obj_ref = …; //Initialize the reference to a distributed object
obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to the local proxy
obj_ptr -> do_something(); //Invoke a method on the local proxy

(b)

Parameter PassingParameter Passing
The situation when passing an object by reference or

by value.

The DCE DistributedThe DCE Distributed--Object Object
ModelModel

a) Distributed dynamic objects in DCE.
b) Distributed named objects

Persistence and Synchronicity in Persistence and Synchronicity in
Communication (1)Communication (1)
General organization of a communication system in

which hosts are connected through a network

Persistence and Synchronicity in Persistence and Synchronicity in
Communication (2)Communication (2)
Persistent communication of letters back in the days

of the Pony Express.

Persistence and Synchronicity in Persistence and Synchronicity in
Communication (3)Communication (3)

a) Persistent asynchronous communication
b) Persistent synchronous communication

2-22.1

Persistence and Synchronicity in Persistence and Synchronicity in
Communication (4)Communication (4)

c) Transient asynchronous communication
d) Receipt-based transient synchronous communication

2-22.2

Persistence and Synchronicity in Persistence and Synchronicity in
Communication (5)Communication (5)

e) Delivery-based transient synchronous communication at message
delivery

f) Response-based transient synchronous communication

Berkeley Sockets (1)Berkeley Sockets (1)
Socket primitives for TCP/IP.

Primitive Meaning

Socket Create a new communication endpoint

Bind Attach a local address to a socket

Listen Announce willingness to accept connections

Accept Block caller until a connection request arrives

Connect Actively attempt to establish a connection

Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection

Berkeley Sockets (2)Berkeley Sockets (2)

Connection-oriented communication pattern using sockets.

The MessageThe Message--Passing Interface Passing Interface
(MPI)(MPI)
Some of the most intuitive message-passing

primitives of MPI.

Primitive Meaning

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send a message and wait until copied to local or remote
buffer

MPI_ssend Send a message and wait until receipt starts

MPI_sendrecv Send a message and wait for reply

MPI_isend Pass reference to outgoing message, and continue

MPI_issend Pass reference to outgoing message, and wait until receipt
starts

MPI_recv Receive a message; block if there are none

MPI_irecv Check if there is an incoming message, but do not block

MessageMessage--Queuing Model (1)Queuing Model (1)
Four combinations for loosely-coupled

communications using queues.

MessageMessage--Queuing Model (2)Queuing Model (2)
Basic interface to a queue in a message-queuing

system.
Primitive Meaning

Put Append a message to a specified queue

Get Block until the specified queue is nonempty, and remove the first message

Poll Check a specified queue for messages, and remove the first. Never block.

Notify Install a handler to be called when a message is put into the specified
queue.

General Architecture of a MessageGeneral Architecture of a Message--Queuing Queuing
System (1)System (1)

The relationship between queue-level addressing
and network-level addressing.

General Architecture of a MessageGeneral Architecture of a Message--Queuing Queuing
System (2)System (2)

The general organization of a message-queuing
system with routers.

2-29

Message BrokersMessage Brokers

The general organization of a message broker in a message-queuing system.

2-30

Example: IBM MQSeriesExample: IBM MQSeries
General organization of IBM's MQSeries message-

queuing system.

ChannelsChannels
Some attributes associated with message channel

agents.
Attribute Description

Transport type Determines the transport protocol to be used

FIFO delivery Indicates that messages are to be delivered in the order they are sent

Message length Maximum length of a single message

Setup retry
count Specifies maximum number of retries to start up the remote MCA

Delivery retries Maximum times MCA will try to put received message into queue

Message Transfer (1)Message Transfer (1)
The general organization of an MQSeries queuing

network using routing tables and aliases.

Message Transfer (2)Message Transfer (2)

Primitives available in an IBM MQSeries MQI

Primitive Description

MQopen Open a (possibly remote) queue

MQclose Close a queue

MQput Put a message into an opened queue

MQget Get a message from a (local) queue

Data Stream (1)Data Stream (1)
Setting up a stream between two processes across a

network.

Data Stream (2)Data Stream (2)
Setting up a stream directly between two devices.

Data Stream (3)Data Stream (3)
An example of multicasting a stream to several

receivers.

Specifying QoS (1)Specifying QoS (1)

A flow specification.

Characteristics of the Input Service Required

•maximum data unit size (bytes)
•Token bucket rate (bytes/sec)
•Toke bucket size (bytes)
•Maximum transmission rate
(bytes/sec)

•Loss sensitivity (bytes)
•Loss interval (sec)
•Burst loss sensitivity (data units)
•Minimum delay noticed (sec)
•Maximum delay variation (sec)
•Quality of guarantee

Specifying QoS (2)Specifying QoS (2)

The principle of a token bucket algorithm.

Setting Up a StreamSetting Up a Stream
The basic organization of RSVP for resource

reservation in a distributed system.

Synchronization Mechanisms Synchronization Mechanisms
(1)(1)
The principle of explicit synchronization on the level

data units.

Synchronization Mechanisms Synchronization Mechanisms
(2)(2)
The principle of synchronization as supported by

high-level interfaces.

ApplicationApplication
 Communication between systems on

large scale.
 Able to large number of systems

though connecting different layer.


Scope of researchScope of research
 AgentOS
 Web OS

