Communication

Layered Protocols (1)

Layers, interfaces, and protocols in the OSI model.

Application protocol

Application | [TTTTTTToTTTT T T T T T 7
Presentation protocol
Presentation | = [~ TTTTTTTToToTTTTTTTTT I A TS 6
Session | = |4 Session protocol 5
Transport t |
Transport | [V 0T POTLPIDIOEO 4
________Network protocol
Network 3
,,,,,,,, Data link protocol
Data link 2
________Physicalprotocol
Phy | 1

Layered Protocols (2)

A typical message as it appears on the network.

— Data link layer header
— Network layer header

Transport layer header

Session layer header
£ Presentation layer header
Application layer header
v v j v
Message <« Datalink
—L layer trailer

'

Bits that actually appear on the network

Data Link Layer

Time A B Event

0 A sends data message O

1 B gets 0, sees bad checksum
A sends data message 1

2 Control 0 B complains about the checksum

3 Both messages arrive correctly
A retransmits data message 0

4 B says: "l want 0, not 1"

5 Both messages arrive correctly

6 A retransmits data message 0 again

7 B finally gets message 0

Discussion between a receiver and a sender in the data link layer.

Client-Server TCP

Client
1 \
SN,
7
SYN,ACK(SYN)
3
AL T ACKESYN)
2 request
I
FIN——
-
ACK(req+FIN)
answer
<« FiN
Time 9
ACK(FIN

(@)

Server

Client

1

Time

I

SYN,request,FIN

SYN,ACK(FIN),answer,FIN ;
-

ACK(FIN)

(b)

a) Normal operation of TCP.
b) Transactional TCP.

Server

Middleware Protocols

T Application protocol T

Application <SP PO > 6
< Middleware protocol >

Middleware | [~ T 2
< Transport protocol »

Transport [[~ 4
« _ Networkprotocol »

Network | | 3

Data link PP Data link protocol - 5
& .. Physicalprotocol »

Physical 1

Network

An adapted reference model for networked communication.

Conventional Procedure Call

Stack pointer

Main program's Main program's

local variables local variables
- bytes

buf

fd

return address

read's local
variables

(@) (b)

a) Parameter passing in a local procedure call: the stack before the call
to read

b) The stack while the called procedure is active

Client and Server Stubs

Principle of RPC between a client and server
program.

Wait for result

Client eo————— ———
A S
Call remote Return
procedure from call
Request Reply

Call local procedure Time ——»
and return results

e cewne sl S U e D D ke

2

C
C
C

Steps of a Remote Procedure

g’r@tI;Lrocedure calls client stub in normal way
lent stub builds message, calls local OS
lent's OS sends message to remote OS

Remote OS gives message to server stub
Server stub unpacks parameters, calls server
Server does work, returns result to the stub
Server stub packs it in message, calls local OS
Server's OS sends message to client's OS
Client's OS gives message to client stub

Stub unpacks result, returns to client

Passing Value Parameters (1)

Steps involved in doing remote computation through
RPC

Client machine Server machine

Client process _ Server process
1. Client call to .
procedure Implementation 6. Stub makes
of add local call to "add"
— Server stub -
Client stub
o, n K’ \ P} n
proc: "add proc: "add
int._val() 2 Stub builds int__val() 5. Stub unpacks
int: val()) message int. val(j) message
. _proc: "add” | 4. Server OS
Client OS —M Server OS hands message
L _int:_vali) | J to server stub

3. Message is sent
across the network

Passing Value Parameters (2)

30 120 11| ol o [20 |3 00 |11 |20 |3

0 10 0 |3 5/ 00 0| 0 0] 0| 0| 5

7] 16 15| 4] |41 |5 6] |7 47 |5) |61 |7

oL JI1L L Ll L] 1]
(@) (b) (©)

Original message on the Pentium
The message after receipt on the SPARC

The message after being inverted. The little numbers in
boxes indicate the address of each byte

Parameter Specification and Stub
Generation

a) A procedure
b) The corresponding message.

foobar's local

variables
X
Y
S
Z[0]
Z[1]
foobar(char x; float y; int z[9]) Z[2]
{ Z[3]
} Z[4]

Doors

Computer
Client process Server process
server_door(...) «€—— [
{
a;)or_return(...): D
}
main
{ ! Enaino
door-callfd, - r | Registerdoor | id = door_create(..)
r— o fattach(fd, door_name, ...);
} -
Operating system k |/
~ J
Invoke registered door f)
at other process Return to calling process

The principle of using doors as IPC mechanism.

Asynchronous RPC (1)

Client Wait for result Client Wait for acceptance
A ¥ A 3
Call remote Return Call remote Return
procedure from call procedure from call

Request Accept request

Server Call local procedure Time —» Server Call local procedure Time —®
and return results

(@) (b)

a) The interconnection between client and server in a traditional
RPC

b) The interaction using asynchronous RPC

Asynchronous RPC (2)

A client and server interacting through two
asynchronous RPCs

\AAit for Interrupt client
acceptance
Cllent ———Fi——— —*--
A »
Call remote Return et
d from call eturn
St results Acknowledge
Accept
Request request
SEIVEN ——mmmm e - ————— N
Call local procedure Time —»™

Call client with
one-way RPC

Writing a Client and a Server

Uuidgen
Interface
definition file

IDL compiler

A4

Header

Client stub

Server stub

#include #include

Client code Server code
A A4

h 4 4) 4
C compiler C compiler C compiler C compiler
h 4 Y

A h 4 h 4
Client Client stub Server stub Server
object file object file object file object file
‘J
Runtime Runtime - v
Linker h Mker
Ilbrary library

h 4

Cllent Server
binary binary

The steps in writing a client and a server in DCE RPC.

Binding a Client to a Server

Client-to-server binding in DCE.

Directory machine

Directory
server
AS : .
3. Look up server 2. Register service

Server machine

Client machine

________5_.%3(3____#_’ Server
Client

\ "
4. Ask for endpoint ™ pbcE
daemon

1. Register endpoint

‘\

|/

Endpoint
table

Distributed Objects

Client

Client machine

invokes
a method

Server machine

Marshalled invocation
is passed across network

Object
Client Server r'd
:|4 State
Same
interface D D D‘ Method
as object
| Skeleton L
. P Interface
Prox invokes Skeleton
Y same method
at object
Client ©OS Server OS
e /
Network \

Common organization of a remote object with client-side proxy.

Binding a Client to an Object

Distr_object* obj_ref; //Declare a systemwide object reference
obj ref=..; // Initialize the reference to a distributed object
obj_ref-> do_something(); // Implicitly bind and invoke a method

(a)
Distr_object objPref; //Declare a systemwide object reference
Local object* obj_ptr; //Declare a pointer to local objects
obj_ref=..; //nitialize the reference to a distributed object
obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to the local proxy
obj_ptr -> do_something(); //Invoke a method on the local proxy

(b)

a) (a) Example with implicit binding using only global references

n) (b) Example with explicit binding using global and local
references

Parameter Passing

The situation when passing an object by reference or
by value.

Machine A Machine B

Local Local object [Remote object
ference L1 7 o Remote 02
e A reference R1 B / >
. L3 L ’,z’ N

Client code with
RMI to server at C
(proxy)

New local
reference { Copy of O1 J
Remote

\4 ’//f/ \
invocation with Y il

L1 and R1 as ﬂ * 1. Copy of R1to O2
parameters

™ Server code
{method implementation)

Machine C

The DCE Distributed-Object
Model

Client #1 Client #2 Client #3 Client #1 Client #2 Client #3

(a) (b)

a) Distributed dynamic objects in DCE.
b) Distributed named objects

Persistence and Synchronicity In
Communication (1)

General organization of a communication system in
which hosts are connected through a network

Messaging interface

Sending host Communication server Communication server Receiving host

Buffer independent

o Routing of communicating Routing L
Application program hosts orogram Application

A A
—l:li/ / To other (remote)

communication

server E‘\
oS) 0s I 0s T \os

) i A L —
Local buffer Local network w_/ Local buffer

Incoming message

—

T

L

(111 -
K,
111 -

Persistence and Synchronicity In
Communication (2)

Persistent communication of letters back in the days
of the Pony Express.

Pony and rider

Post |~
office | ~__ >
//v *
Post # Post |~
office | ___* ____ p» | office |

Mail stored and sorted, to
be sent out depending on destination
and when pony and rider available

m | Post | Ty
office | ~._
A

Persistence and Synchronicity In
Communication (3)

A sends message
and continues A stopped

A A
Message is stored
2 at B's location for Accepted

A sends message

. _ A stopped
and waits until accepted

running

Time later delivery \ Time
_________________ —’ B_________ ___________{:)_
R —— N ———
_ B starts and B is not B starts and
Bis not receives running receives
running message message
(a) (b)

a) Persistent asynchronous communication
b) Persistent synchronous communication

Persistence and Synchronicity In
Communication (4)

A sends message Send request and wait
;ﬂd continues until received
A Message can be A
sentonly if B is
running Request ACK
Time Is received Time
B - —_ 2 SO, (N
S | T —
B receives Running, but doing Process
message something else request

(©) (d)

c) Transient asynchronous communication
d) Recelipt-based transient synchronous communication

Persistence and Synchronicity In

Communication (5)

Send request and wait until

accepted f
A — — .
Request
Is received Accepted T
ime
B o g
x_h___hv;«'____/w\,__\f__/
Running, but doing Process
something else request

©)

Send request
and wait for reply

A o— A
Request Accepted
Is received _
\ Time
B \q______ﬁ_vad_"hfr_'___fi-ﬁ;\;____\}/_/_)\) ____________
Running, but doing Process
something else request

(f)

e) Delivery-based transient synchronous communication at message

delivery

f) Response-based transient synchronous communication

Berkeley Sockets (1)

Socket primitives for TCP/IP.

Primitive Meaning
Socket Create a new communication endpoint
Bind Attach a local address to a socket
Listen Announce willingness to accept connections
Accept Block caller until a connection request arrives
Connect Actively attempt to establish a connection
Send Send some data over the connection
Receive Receive some data over the connection
Close Release the connection

Berkeley Sockets (2)

TN

{ !
{ !

! L
; Communication ',
/ ,"
- write ——» read - close

Server
| socket - bind I listen — accept
Synchronization point —Pi
Y
| socket Pconnect
Client

N

Connection-oriented communication pattern using sockets.

The Message-Passing Interface
(MPI)

Some of the most intuitive message-passing
primitives of MPI.

Primitive Meaning
MPI1_bsend Append outgoing message to a local send buffer
MPI send Send a message and wait until copied to local or remote
- buffer
MPI1_ssend Send a message and wait until receipt starts

MPI1_sendrecv | Send a message and wait for reply

MPI _isend Pass reference to outgoing message, and continue

MPI issend Pass reference to outgoing message, and wait until receipt
- starts

MPI1_recv Receive a message; block if there are none

MPI _irecv Check if there is an incoming message, but do not block

Message-Queuing Model (1)

Four combinations for loosely-coupled
communications using queues.

running running passive

Receiver
running passive running passive

Message-Queuing Model (2)

Basic interface to a queue in a message-queuing

system.
Primitive Meaning
Put Append a message to a specified queue
Get Block until the specified queue is nonempty, and remove the first message
Poll Check a specified queue for messages, and remove the first. Never block.
Notify (Iqu];[jg_a handler to be called when a message is put into the specified

General Architecture of a Message-Queuing
System (1)

The relationship between gueue-level addressing
and network-level addressing.

Look-up

Sender |~ transport-level Receiver
address of queue

Queuing ‘LE%\ Queue-level ffﬁ Queuing
layer 4 layer

address i\

Address look-up ?\

Local OS
database J

Local OS

Transport-level
address

Network

General Architecture of a Message-Queuing
System (2)

The general organization of a message-queuing
system with routers.

Sender A

Application
PP Application
Receive
queue
1T -] R2 L
Message <«»| L]
[} w II
Send queue [S :
[T 11 >
. Application

-

[
R1 N =
] . IR
ST * Receiver B
o I
Application
Router

Message Brokers

Database with
Source client Message broker conversion rules Destination client

\) # y

Broker
program

N
AN

| e

0S

0S

085S

.

-

The general organization of a message broker in a message-queuing system.

Example: IBM MQSeries

General organization of IBM's MQSeries message-
gueuing system.

Client's receive
Sending client Routing table Send queue queue

|
) J y
Queue Queue
Program manager manager Program
S

MQ Interface ///—Tj L{_—]‘ // u \Tr/
Server Server)
Stub

e | e e MCA \MCA e Stub
RPC Local network

s
Internetwork)
(synchronous) WJTO other remote

Message passing queue managers
(asynchronous)

Receiving client

Channels

Some attributes associated with message channel

. aQers. .y
Attribute Y Description
Transport type Determines the transport protocol to be used
FIFO delivery Indicates that messages are to be delivered in the order they are sent

Message length

Maximum length of a single message

Setup retry
count

Specifies maximum number of retries to start up the remote MCA

Delivery retries

Maximum times MCA will try to put received message into queue

Message Transfer (1)

The general organization of an MQSeries queuing
network using routing tables and aliases.

Alias table Routing table
LAT |aMmc oMB | so1 Aliastable Routing table
LA2 |QMD QMC | SQ1 LA1 | QMA QMA | SO
QmD| $Q2 LAZ | QMD QMC | SQ1
QMD | SO
SQQL_\J L_VI sQf
QMA H SQ1
— QMB
Routing table g1 || S . aMc Routing table
QMA | SQ1 Tl h
L. - QMA | SQ1
QMC | 5Q2 sqQ2_Il| e QMB | san
QMB | 51 RETEE L QMD | SO
Alias table
LA1 | QMA ~{[] sQ1
LAZ | QMC| |

QMD

Message Transfer (2)

Primitive Description
MQopen Open a (possibly remote) queue
MQclose Close a queue
MQput Put a message into an opened queue
MQget Get a message from a (local) queue

Primitives available in an IBM MQSeries MQI

Data Stream (1)

Setting up a stream between two processes across a
network.

Sending process

2

- [~)

Receiving process

A

Stream
0SS ¢ 0SS

Network
(a)

Data Stream (2)

Setting up a stream directly between two devices.

Camera
H:iﬂ Display
oS Stream os r 3‘

T , 5y

Network

(b)

Data Stream (3)

An example of multicasting a stream to several
receivers.

Stream ’ Sink

A
{ Intermediate
hode, possibly
Source \) with filters

L >

Lower bandwﬁ‘[I

Specifying QoS (1)

Characteristics of the Input

Service Required

maximum data unit size (bytes)
Token bucket rate (bytes/sec)
Toke bucket size (bytes)

Maximum transmission rate
(bytes/sec)

Loss sensitivity (bytes)

Loss interval (usec)

Burst loss sensitivity (data units)
Minimum delay noticed (usec)
Maximum delay variation (usec)
Quality of guarantee

A flow specification.

Specifying QoS (2)

Application —
E—% |
A4

Irregular stream One token is added

of data units to the bucket every AT
L

Regular stream

The principle of a token bucket algorithm.

Setting Up a Stream

The basic organization of RSVP for resource
reservation in a distributed system.

Sender process

EY

RSVP-enabled host

Application

4~ RSVP process

Policy
control

Application L -
data stream \A
RSVP
program
A
Y Local OS k J Reservation requests
Data link layer Admission from other RSVP hosts
control
N/_\V/_NF\
Data link layer / VT
data stream —»™ &
K . :l} Internetwork
s
Local network —
Setup information to e

other RSYP hosts

Synchronization Mechanisms

(1)

The principle of explicit synchronization on the level
data units.

Receiver's machine

Application
Procedure that reads

two audio data units for —
each video data unit
Incoming stream ‘; >[ﬂ

\ 0S
________ L

Network

Synchronization Mechanisms

(2)

The principle of synchronization as supported by
high-level interfaces.

Application tells
Receiver's machine middleware what
to do with incoming

Application streams

Multimedia control
Is part of middleware

g

Incoming stream ? TOS

Application

o« Communication between systems on
large scale.

» Able to large number of systems
though connecting different layer.

Scope of research

*» AgentOS
» Web OS

