
Java Server Pages

UNIT III

2

JSP and Servlet
 Limitations of servlet

 It is difficult to write HTML
 It’s ineffective to design webpages
 It’s inaccessible to non-programmers

 JSP is a complement to servlet
 JSP focuses on user interface and presentation
 JSP enhances the design capability of servlet
 JSP pages can be written with any text editor,

including HTML editor
 JSP is a server side technology

3

JSP Pages
 JSP page file ends with “.jsp” by default

 JSP pages are organized like any other HTML files using
the normal directory/file structure

 A JSP page is usually composed of regular HTML tags
and JSP scripting elements

 JSP page is implicitly compiled to servlet class and
loaded into memory
 when the page is requested the first time after creation, or
 when the page is requested the first time after modification
 Refer to table 10.1 in the textbook and the next slide

4

JSP Compilation and Execution
JSP Page

Compile JSP Servlet Instance in Memory

init()

service()

First request
after creation or

modification

Subsequent
Requests (can

be from
different users
and sessions)

JSP Servlet

Automatic Compilation

5

Servlet and JSP
Servlet JSP

Development java classes (.java) scripting file (.jsp)

Deployment Manually compiled;
Specifically mapped

Directly mapped: copy JSP
files to intended directories

Execution No need of source
files

Automatic compilation;
automatic reloaded; source
files (.jsp) are necessary

6

JSP Elements
 Scripting elements

 Scriptlet
 Regular Java code

 Expression
 Shortcut for output

 Declaration
 Declaring variables and methods at the class level

 Directive

 JSP action

 Comments (<%-- … --%>)

7

Scriptlets
 Wraps regular Java statements which are usually written

within a method

<%
… (Java statements)
// may include comments, variable declaration and assignment, loops,
conditional statements, object initialization, method call, etc…

%>

 Using the implicit object “out” as the standard output

out.println(…) or out.print(…)

8

Expression

 A shortcut to print out a value or an
expression

<%= [expression]%>

Expression can be a variable, formula, object
property, string concatenation, method with
return value, or anything that returns a value

9

JSP Output Practices

 Ways to treat static HTML content

Regular/block output (servlet way)
 Uses “out.println()” or “out.print()” method to

generate all content, including static content

“Spaghetti”/mixed output (scripting way)
 Uses JSP scriptlets or expressions for dynamic

content only
 Mixes scripting elements and static content

10

Regular Output

 Using “out.print()” or “out.println()” method
to generate HTML as a block, even the
whole page – Servlet way

 StringBuffer is often used to construct
HTML content first, and then printed out at
one time

11

Spaghetti Output
 Expression elements are often used where

dynamic content is needed

 Use regular HTML for static content; don’t
include them in JSP scripting elements

 How mixed should it be?
 Depends on your own style
 Coding should be most convenient and clear
 Depends on development requirement

12

Declarations
 Declaration element is used to define member variables

and methods

<%! … %>

 Variables not defined in declaration element are local / method
level variables

 Methods can only be defined in the declaration element

 Like regular class variables and methods, the location
where you define these variables and methods is not
important

13

JSP Page Directive
 Directives affects the overall structure of the

servlet generated

<%@ … %>

 Use page directive to import classes

<%@ page import=“…, …, …”%>

 This is equivalent to the “import” statement in regular
Java classes

14

JSP Include Directive
 How to reuse code?

 Use include directive to include source code
from another file

<%@ include file=“…” %>

 Inclusion happens at the compilation time
What is included is the source, not generated result
Often used to include method definitions

15

JSP Include Action
 Use “jsp:include” action to dynamically include content

from other files
 The statement is placed where the actual content will be inserted

<jsp:include page=“…” />

 “page” points to a local text file (.html, .htm, .jsp, .txt)
 Relative path
<jsp:include page=“menu.jsp” />

 Absolute path
 Note: absolute path starts from the current application context

<jsp:include page=“/menu.jsp” />

16

Include Action Usage
 “jsp:include” is often used to include the contents that

are consistent on many pages, e.g., menus, titles, page
headers, footnotes, …
 http://www.delta.com
 See example “ssi.jsp” and “WEB-INF/menu.jsp”

 Or, it is often used to include contents that are different
(dynamic inclusion)
 http://www.cardmemberservices.com/
 http://jackzheng.net/cis3270summer2006/
 See example “home.jsp” and “WEB-INF/course.htm”

 Or a hybrid model (templating)

http://www.delta.com
http://www.cardmemberservices.com/
http://jackzheng.net/cis3270summer2006/

17

Include Action and Directive Comparison

Include Action Include Directive
When does
inclusion occur?

At request/run time At compilation time

What’s included? Final output of the
included page

Source code/content

Main page
maintenance

Updates of the included
page is automatically
reflected

Updates of the included
page is NOT automatically
reflected

 See table 13.1 one page 380 for a complete comparison of include
directive and include action

18

Redirection, Refreshing and Forwarding

 Redirection
 response.sendRedirect()

 Refreshing
 response.setHeader(“Refresh”, “10; url=…”)

 Forwarding <jsp:forward page=“…” />
 The “page” attribute follows the same rule as that of <jsp:include/>
 Forwarding does not invoke network traffic
 The destination URL is hidden; original requested URL does not change

in browser address bar after forwarding

 Compare redirecting and forwarding

19

Request Processing
 Using implicit object “request”

 Processing HTTP request headers
 The same way as servlet

 Reading URL parameter

http://localhost/appcontext/request.jsp?choice=yes

 Parameter processing is the same way as servlet, using
request.getParameter(“…”), request.getPameterValues(“…”)

http://localhost/appcontext/request.jsp?choice=yes

20

Form Processing with JSP

 The same way as servlet

request.getParameter(“…”)
request.getParameterValues(“…”)

 Note: the action attribute of the form should be a JSP
file that processes data

<form method=“post” action=“studentprofile.jsp”>…</form>

21

Database Processing with JSP

 The same way as servlet
Don’t forget the directive

<%@ page import="java.sql.*" %>

See the example “product.jsp”

22

JSP Implicit Objects Summary

 Some system objects are initialize automatically
ready to use in the JSP environment
 out: standard output object
 request: represents request information and behavior
 response: represents response information and

behavior
 [session]: represents a typical time period of

communication between a client and a server
 [application]: represents context of a web application

