
UNIT III
jSP & ASP

Contents

 Introduction
 Why Use JSP?
 Advantages of JSP
 Installing JSP
 JSP – Architecture
 JSP Processing
 JSP - Life Cycle

What is Java Server Pages?

 Java Server Pages (JSP) is a technology for developing
web pages that support dynamic content which helps
developers insert java code in HTML pages by making
use of special JSP tags, most of which start with <% and
end with %>.

 Web developers write JSPs as text files that combine
HTML or XHTML code, XML elements, and embedded
JSP actions and commands.

 Using JSP, you can collect input from users through web
page forms, present records from a database or another
source, and create web pages dynamically.

Why Use JSP?

 Performance is significantly better because JSP allows embedding
Dynamic Elements in HTML Pages itself instead of having a separate CGI
files.

 JSP are always compiled before it's processed by the server unlike
CGI/Perl which requires the server to load an interpreter and the target
script each time the page is requested.

 JavaServer Pages are built on top of the Java Servlets API, so like
Servlets, JSP also has access to all the powerful Enterprise Java APIs,
including JDBC, JNDI, EJB, JAXP etc.

 JSP pages can be used in combination with servlets that handle the
business logic, the model supported by Java servlet template engines.

 Finally, JSP is an integral part of J2EE, a complete platform for enterprise
class applications. This means that JSP can play a part in the simplest
applications to the most complex and demanding.

Advantages of JSP
 vs. Active Server Pages (ASP): The advantages of JSP are

twofold. First, the dynamic part is written in Java, not Visual Basic or
other MS specific language, so it is more powerful and easier to use.
Second, it is portable to other operating systems and non-Microsoft
Web servers.

 vs. Pure Servlets: It is more convenient to write (and to modify!)
regular HTML than to have plenty of println statements that generate
the HTML.

 vs. Server-Side Includes (SSI): SSI is really only intended for
simple inclusions, not for "real" programs that use form data, make
database connections, and the like.

 vs. JavaScript: JavaScript can generate HTML dynamically on the
client but can hardly interact with the web server to perform complex
tasks like database access and image processing etc.

 vs. Static HTML: Regular HTML, of course, cannot contain dynamic

Installing JSP

 First of all download JavaServer Web Development Kit
(JSWDK1.0.1) from
http://java.sun.com/products/servlet/download.html.
JSWDK comes with full documentation and it's very
easy to install.

 The JSWDK is the official reference implementation of
the servlet 2.1 and JSP 1.0 specifications. It is used as a
small stand-alone server for testing servlets and JSP
pages before they are deployed to a full Web server that
supports these technologies. It is free and reliable, but
takes quite a bit of effort to install and configure.

http://java.sun.com/products/servlet/download.html.

Other Servers that support JSP

 Apache Tomcat.
Tomcat is the official reference implementation of the servlet 2.2 and JSP 1.1
specifications. It can be used as a small stand-alone server for testing
servlets and JSP pages, or can be integrated into the Apache Web server.

 Allaire JRun.
JRun is a servlet and JSP engine that can be plugged into Netscape
Enterprise or FastTrack servers, IIS, Microsoft Personal Web Server, older
versions of Apache, O?Reilly?s WebSite, or StarNine WebSTAR.

 New Atlanta?s ServletExec.
ServletExec is a fast servlet and JSP engine that can be plugged into most
popular Web servers for Solaris, Windows, MacOS, HP-UX and Linux.

 Gefion's LiteWebServer (LWS). LWS is a small free Web server that
supports servlets version 2.2 and JSP 1.1.

 WebSphere. IBM's WebSphere very large application server now
implements JSP.

JSP - Architecture

JSP Processing

The following steps explain how the web server creates the
web page using JSP:

 As with a normal page, your browser sends an HTTP request to
the web server.

 The web server recognizes that the HTTP request is for a JSP
page and forwards it to a JSP engine. This is done by using the
URL or JSP page which ends with .jsp instead of .html.

 The JSP engine loads the JSP page from disk and converts it
into a servlet content. This conversion is very simple in which all
template text is converted to println() statements and all JSP
elements are converted to Java code that implements the
corresponding dynamic behaviour of the page.

JSP Processing (contd..)

 The JSP engine compiles the servlet into an executable class
and forwards the original request to a servlet engine.

 A part of the web server called the servlet engine loads the
Servlet class and executes it. During execution, the servlet
produces an output in HTML format, which the servlet engine
passes to the web server inside an HTTP response.

 The web server forwards the HTTP response to your browser
in terms of static HTML content.

 Finally web browser handles the dynamically generated HTML
page inside the HTTP response exactly as if it were a static
page.

Steps explained with the help of a diagram

JSP - Life Cycle

Paths followed by a JSP in its life
cycle

The following are the paths followed by a JSP
1. Compilation
2. Initialization
3. Execution
4. Cleanup

 (1) JSP Compilation:

When a browser asks for a JSP, the JSP engine first checks to see whether it
needs to compile the page. If the page has never been compiled, or if the
JSP has been modified since it was last compiled, the JSP engine compiles
the page.

The compilation process involves three steps:
 Parsing the JSP.
 Turning the JSP into a servlet.
 Compiling the servlet.

 (2) JSP Initialization:

When a container loads a JSP it invokes the jspInit() method before servicing any
requests. Typically initialization is performed only once and as with the servlet
init method, you generally initialize database connections, open files, and create
lookup tables in the jspInit method.

(3)JSP Execution:

 This phase of the JSP life cycle represents all interactions with requests
until the JSP is destroyed.

 Whenever a browser requests a JSP and the page has been loaded
and initialized, the JSP engine invokes the _jspService() method in the
JSP.

 The jspService() method of a JSP is invoked once per a request and is
responsible for generating the response for that request and this
method is also responsible for generating responses to all seven of the
HTTP methods ie. GET, POST, DELETE etc.

(4) JSP Cleanup:

 The destruction phase of the JSP life cycle represents when a JSP is
being removed from use by a container.

 The jspDestroy() method is the JSP equivalent of the destroy method
for servlets.

JSP - Syntax

The Scriptlet:

 A scriptlet can contain any number of JAVA language statements,
variable or method declarations, or expressions that are valid in the
page scripting language.

 Following is the syntax of Scriptlet:

 <% code fragment %>

You can write XML equivalent of the above syntax as follows:

<jsp:scriptlet> code fragment</jsp:scriptlet>

Any text, HTML tags, or JSP elements you write must be outside the
scriptlet.

Following is the syntax of Scriptlet:

<%
code fragment
%>

You can write XML equivalent of the above syntax as
follows:

<jsp:scriptlet> code fragment</jsp:scriptlet>

Any text, HTML tags, or JSP elements you write
must be outside the scriptlet.

simple and first example for
JSP

<html>
<head>
<title>Hello World</title>
</head>
<body>
Hello World!

<%
out.println("Your IP address is " +

request.getRemoteAddr());
%>
</body>
</html>

Output

Let us keep above code in JSP file hello.jsp and put this
file in C:\apache-tomcat-7.0.2\webapps\ROOT
directory and try to browse it by giving URL
http://localhost:8080/hello.jsp. This would generate
following result:

http://localhost:8080/hello.jsp.

Another example

<html>
<head>
<title>First JSP page.</title>
</head>
<body>
<p align="center">

<%="Java Developers Paradise"%>
</p>

<p align="center">
<%="Hello JSP"%>
</p>

</body>
</html>

Output

Java Developers Paradise
Hello JSP

JSP - Auto Refresh : Another
Example
<%@ page import="java.io.*,java.util.*" %>
<html>
<head><title>Auto Refresh Header Example</title></head>
<body><center><h2>Auto Refresh Header Example</h2>
<% // Set refresh, autoload time as 5 seconds

response.setIntHeader("Refresh", 5);
// Get current time
Calendar calendar = new Calendar();

int hour = calendar.get(Calendar.HOUR);
int minute = calendar.get(Calendar.MINUTE);
int second = calendar.get(Calendar.SECOND);

if(calendar.get(Calendar.AM_PM) == 0)
String CT = hour+":"+ minute +":"+ second ;
out.println("Crrent Time: " + CT + "\n");%>
</center></body></html>

Output

Auto Refresh Header Example
Current Time is: 9:44:50 PM

Application

 JSP enables a clean separation of business
logic from presentation.

 JSP, by using Java as the scripting language,
is not limited to a specific vendor platform.

 JSP, as an integral part of the J2EE
architecture, has full access to server-side
resources.

Scope of research

 Can JSP accept HTTP POST requests with
multipart

form-data encode for file upload

