
1

Software Project
Management

4th Edition

Project evaluation &
estimation

Chapter 3

Introduction

• Evolutionary Process model

• Spiral model

Evolutionary Process Models
Evolutionary Models are characterized in a manner

that enables software engineers to develop increasingly

more complete versions of the software.

Three Types are there :

• Prototyping Model

• Spiral Model

• Concurrent

3

4

Evolutionary Models: Prototyping

Communicat ion

Quick plan

Construction
of
prototype

Modeling
 Quick design

Delivery
& Feedback

Deployment

communication

Quick
plan

Modeling
Quick design

Construction
of prototype

Deployment
delivery &
feedback

Prototyping Model
• The prototyping paradigm begins with communication.

• The software engineer and customer meet and define the overall

objectives for the software, identify whatever requirements are known,

and outline areas where further definition is mandatory.

• A prototyping iteration is planned quickly and modeling (in the form of a

“quick design”) occurs.

• The quick design focuses on a representation of those aspects of the

software that will be visible to the customer/end-user (eg. Human

interface layouts or output display formats).

5

• The quick design leads to the construction of a prototype. The prototype is

deployed and then evaluated by the customer/end-user. Feedback is used

to refine requirements for the software.

• Iteration occurs as the prototype is tuned to satisfy the needs of the

customer. While at the same time enabling the developer to better

understand what needs to be done.

• Ideally, the prototype serves as a mechanism for identifying software

requirements. If a working prototype is built, the developer attempts to

make use of existing program fragments or applies tools. (e.g. report

generators, window managers, etc), that enable working programs to be

generated quickly.

6

• It is true that both customers and developers like the prototyping paradigm.

User get a feel for the actual system, and developers get to build something

immediately.

Yet, prototyping can be problematic for the following reasons:

1. The customer sees what appears to be working version of the software,

unaware that in the rush to get it working we haven’t considered overall

software quality or long-term maintainability. When informed that the

product must be rebuilt so that high levels of quality can be maintained, the

cries foul and demands that “a few fixes” be applied to make the prototype a

working product. Too often, software development management give up.

7

2. The developer often makes implementation compromises in

order to get a prototype working quickly. An inappropriate

Operating system or programming language maybe used simply

because it is available and known; an inefficient algorithm may

be implemented simply to demonstrate capability. After a time,

the developer may become comfortable with these choices and

forget all the reasons why they were inappropriate. The less-

then ideal choice has now become an integral part of the

system.

8

• Although problems can occur, prototyping can be an

effective paradigm for software engineering.

• The key is to define the rules of the game at the

beginning; i.e. the customer and developer must

both agree that the prototype is built to serve as a

mechanism for defining requirements.

• It is then discarded (at least in part) and the actual

software is engineered with an eye toward quality.

9

Doubts of Previous Session
• Drawbacks of RAD Model

the RAD approach has drawbacks:

(1) For large, but scalable projects, RAD requires sufficient human resources

to create the right number of RAD teams.

(2) If developers and customers are not committed to rapid fire activities

necessary to complete the system in a much abbreviated (reduced) time

frame, RAD projects will fail.

(3) RAD may not be appropriate when technical risks are high (eg. When a

new application makes heavy use of a new technology)

10

11

Evolutionary Models: The Spiral

communication

planning

modeling

construction
deployment
 delivery
 feedback

start

analysis
design

code
test

estimation
scheduling
risk analysis

The Spiral Model

• The spiral model is an evolutionary process model that couples the iterative

nature of prototyping with the systematic aspects of the waterfall model.

• It provides the potential for rapid development of increasingly more

complete versions of the software. Using a spiral model, software is

developed in a series of evolutionary releases.

• During early iterations, the release might be a paper model or prototype.

During later iterations, increasingly more complete versions of the

engineered systems are produced.

12

• A spiral model is divided into a set of framework activities defined by

the software engineering team. Each of the framework activities

represent one segment of the spiral path illustrated in the diagram.

• As this evolutionary process begins, the software team performs

activities that are implied by circuit around the spiral in a clockwise

direction, beginning at the center.

13

• The first circuit around the spiral might result in the development of a

product specification; subsequent passes around the spiral might be used

to develop a prototype and then progressively more sophisticated

versions of the software.

• Each pass through the planning region results in adjustments to the

project plan. Cost and schedule are adjusted based on feedback derived

from the customer after delivery.

• In addition, the project manager adjusts the planned number of

iterations required to complete the software.

14

• Unlike other process models that end when software is delivered, the spiral model can be

adapted to apply throughout the life of the computer software. Therefore, the first circuit

around the spiral might represent a “conceptual development project” which starts at the

core of the spiral and continues for multiple iterations until concept development is

complete.

• If the concept is to be developed into an actual product, the process proceeds outward on

the spiral and a “new product development project” commences.

• The new product will evolve through a number of iterations around the spiral. Later a circuit

around the spiral might be used to represent a “product enhancement project.” in essence

the spiral, when characterized in this way, remains operative until the software is retired.

There are times when the process is dormant (inactive), but whenever a change is initiated,

the process starts at the appropriate entry point. (e.g. product enhancement).

15

• The spiral model is a realistic approach to the development of large scale systems

and software. Because software evolves as the process progresses, the developer

and customer better understand and react to risks at each evolutionary level.

• The spiral model uses prototyping as a risk reduction mechanism, but more

importantly, enables the developer to apply the prototyping approach at any stage

in the evolution of the product. It maintains the systematic stepwise approach

suggested by the classic life cycle but incorporates it into an iterative framework

that more realistically reflects the real world.

• The spiral model demands a direct consideration of technical risks at all stages of

the project and, if properly applied, should reduce risks before they become

problematic.

16

17

Benefits management

the
application

developers users

benefits
build

use

to deliver

organization

for

•Providing an organization with a capability does not guarantee that
this will provide benefits envisaged – need for benefits management

•This has to be outside the project – project will have been completed

•Therefore done at programme level

18

Benefits management

To carry this out, you must:
• Define expected benefits
• Analyse balance between costs and

benefits
• Plan how benefits will be achieved
• Allocate responsibilities for their

achievement
• Monitor achievement of benefits

19

Benefits

These might include:

• Mandatory requirement

• Improved quality of service

• Increased productivity

• More motivated workforce

• Internal management benefits

20

Benefits - continued

• Risk reduction

• Economies

• Revenue enhancement/acceleration

• Strategic fit

21

Quantifying benefits

Benefits can be:

• Quantified and valued e.g. a reduction of x
staff saving £y

• Quantified but not valued e.g. a decrease in
customer complaints by x%

• Identified but not easily quantified – e.g.
public approval for a organization in the
locality where it is based

Application

• Risk reduction

• Economies

• Revenue enhancement/acceleration

• Strategic fit

Research
• The Theater-Level Campaign Model
A Research Prototype for a New Generation of Combat Analysis Model

Many analysts and decisionmakers argue that an order-of-magnitude leap forward in military
modeling for the post-Cold War era — particularly campaign modeling — is essential to improve
the quality of analyses, training, acquisition, test and evaluation, and innovative thinking. This
research has been a step to ensure that the next-generation campaign models will not be mere
rewrites of tools currently in use. The authors investigated alternatives to four aspects of modeling
they think are essential to improving theater-level campaign analysis: (1) how to create more
flexible structures to simulate the wide range of future scenarios and their associated uncertainties;
(2) how to link to more detailed models in an analytically valid way; (3) how to represent ground
forces maneuvering at the theater campaign level; and (4) how to represent adaptive behavior and
aspects of command and control better in this type of model. This research provides insights into
some of the alternatives and suggested some promising directions. The authors built the prototype
Theater-Level Campaign (TLC) model and used it as a test bed for the different approaches. In many
cases, methods were tried and then, finding they were not promising, that code was removed, and
research started over in the true spirit of prototyping. The authors believe this type of prototyping
and experimentation is critical to the advancement of the state of the art of campaign modeling
and analysis. The various sections of the report describe the results associated with each aspect of
the experimentation and conclude with more general observations and recommendations for the
future.

Reference Link : http://www.rand.org/pubs/monograph_reports/MR388.html

http://www.rand.org/pubs/monograph_reports/MR388.html

