
The Mach SystemThe Mach System

Some Some argumentsarguments
Microkernel:

- Is a layered – structure a partial microkernel idea???
- Not so:
- A microkernel is physically divided into separate

modules. It may consist of 1 or more layers – but only
logically.

- A layered kernel is physically divided into layers, but
logically – it might consist of one or more modules.

- A microkernel may be (and often is) logically single
layered because many layered kernel is again a ??

Some Issues
• How do you deal with hardware in UNIX?

– Operating systems provide interfaces and management
of hardware resources

– E.g., interrupts and I/O devices.
• A microkernel seems to optimize operating system design

– So, should make operating system (lower level) easier
to modify

– Layered approach– so, seems good in principle
• Is the UNIX (or other “user application” O/S) really a User

Application?
– Are users going to write additional operating systems?

Solution Solution –– Microkernel.Microkernel.

 Microkernel designs put a lot of OS services in separate
processes to build modular operating systems.

- Kernel’s functionality is reduced and put into user servers.
 This architecture is actually a client-server model.

- Clients call other OS services through microkernel.
 The central processes that provide the process management,

file system etc are frequently called the servers.
 Microkernels are often also highly multithreaded.

- Each thread has a different service to perform.
- What happens with speed of IPC?

What What isis Mach?Mach?
 Mach
◦ Transparent multiprocessing – Avoiding issues in BSD.
◦ Protected message passing – Better than Unix message

messaging.
◦ “extensible” Microkernel
◦ Multiple levels of operating system
 Other O/S’s implemented as “applications”

◦ Basis for NeXT O/S, Mac X O/S, OSF/1

Design Goals of MachDesign Goals of Mach
 Full support for multiprocessing.
 Exploit other features of modern hardware architectures that

were emerging at that time.
 Supports transparent distributed operation.
 Reduce the number of features in the kernel, and therefore

make it less complex, giving the programmer a very small
number of abstractions to work with.

 The abstractions are just general enough to allow several
operating systems to be implemented on top of Mach.

 Full compatibility with UNIX BSD.
 Address the shortcomings of previous systems such as Accent.

Approach:Approach:

- a small, extensible system kernel which provides scheduling,
virtual memory and interprocess communications

- and several, possibly parallel, operating system support
environments which provide the following two items:
1) distributed file access and remote execution
2) emulation for established operating system environments
such as UNIX.

Overall MachOverall Mach

 IPC – RPC messages.
- Send and receive.

 When the message queue is
full the senders block; when
it is empty, the receivers
block.

 Indirect communication.
 Heavy weight context

switching.
 Speed is compromised ; but

protection is ensured.

Portable

Machine DependentLayer 0

Layer 1

rec

send

Abstractions

UNIX

Task’s
address
space

User process

port

Mach’s abstractionsMach’s abstractions
 A task is an execution environment and is the basic unit of

resource allocation.
- Includes a paged virtual address space (potentially sparse)
- protected access to system resources (such as processors, port

capabilities and virtual memory).
 A thread is the basic unit of execution. A thread executes in

the context of a single task. A UNIX Process = Task +
thread.

 A port is a simplex communication channel -- implemented as
a message queue managed and protected by the kernel.

- Basic object reference mechanism in MACH.
- Ports are used to refer to objects; operations on objects are

requested by sending messages to the ports which represent them.

Contd..Contd..
 A port set is a group of ports, implemented as a queue

combining the message queues of the constituent ports.
- A thread may use a port set to receive a message sent to any of several

ports.
 A message is a typed collection of data objects used in

communication between threads.
- Can by of any size and may contain inline data, pointers to data,

and capabilities for ports.
 A memory object is a secondary storage object that is mapped

into a task's virtual memory.
- memory object is treated like any other object.

DifferencesDifferences

 Ports are a protected entity that can only be addressed by the
Mach microkernel,

 Port rights are attached to a given task and describe the
operations that they can provide on a port,

 Port names are the identifiers that tasks must use to request
some operations on this ports.

 This looks similar to - Files, files access rights and file
descriptors in a traditional UNIX system.

Process ManagementProcess Management
 Page fault- Performs better than Unix processes.

- Each thread runs on a processor.
 Mach IPC is used for thread synchronization.
 Cthreads package.
 CPU scheduler - Global run queues with appropriate

locks and local run queues. – Heavy weight context
switching.

 Fixed Time quantum – What if the threads are lesser
than processors?? Mach uses a variable time quantum
inversely proportional to the no. of threads.

 Exception Handling – RPC message passing for
handling.

IPCIPC
 IPC -> ports and messages.
 Memory management is used in its implementation.
 Conversely, IPC is used in memory management.
 Ports:

- Enable a thread to send data to another thread in a
controlled manner.

- Send & receive rights – Port name + capability.
- Only one task with receive rights
- Can be multiple with send rights
- Sending receive rights to another task causes ownership of

receive rights to change.

IPC Contd..IPC Contd..
- Ports are location independent.

- Ensures portability through this one communication
mechanism.

Messages – Fixed-length header + variable number of
typed data objects.
- Header - Destination port + reply port +length of the message.

- Data (inline data – versions vary).
- Port rights (only way to send port rights is in messages)
- Pointers to “out of line” data (Large messages).

-Two cases: receiver on same vs. different.
- Used to implement remote procedure calls (RPC).

IPC Contd..IPC Contd..
 Receiver on same computer
◦ No need to necessarily copy message from sender to

receiver
◦ Takes time to copy messages.
◦ Instead, when message contents unchanged, use virtual

memory-based technique for improving efficiency
 A kind of shared memory solution.
 “copy-on-write”

IPC contd…IPC contd…
 Receiver on different computers.

- In comparison with UNIX which uses low-level
network protocols.

- Mach provides an optimized solution.
- Provided by NetMsgServer.

“User-Level” Message Server:
NetMsgServer

• Enables location-transparent naming of ports
- Does not matter which computer a port is on.
- NetMsgServer dynamically resolves the addresses.

• Services:
- Data Independence.
- Network wide name service
- Allows ports to be registered
- Distributed database of port rights
- Forwarding of messages by acting as proxy ports.
- Data conversions (different computer architectures).

Memory ManagementMemory Management
 A memory object represents a secondary object that is mapped

into the address space of a task.
- Treated just like any other object.

 Unlike traditional UNIX, which implied a contiguous virtual
memory space Mach allowed for sparse address spaces, where
regions of memory could be allocated from anywhere in the
address space.

 No regular page table.
 User-level memory managers can be used instead for memory

to be paged.

Contd..Contd..
 Mach takes care of basics only
◦ Acts as interface between hardware and user-level
 e.g. receives page faults from hardware
 Notifies relevant task (via port) of page fault

◦ Implements pageout policy (FIFO).
◦ Supplies default Memory Manager in some cases where user level fails.

 User-Level Memory Managers
◦ Handle majority of memory management - can page memory.
◦ System calls used to communicate with kernel for memory mapping /

page-in / page-out / provide page-level locking
◦ Responsible for consistency of the contents of a memory object mapped

by tasks on different machines.

Shared MemoryShared Memory
 Mach approaches the shared memory in a different way.
 Consistent shared memory is supported only for shared

processors.
 Tasks running on processors sharing memory

– Standard FORK system call , Parent declares regions to be
inherited by the child task.

– Doesn’t use copy-write strategy. But readable-writable
technique.

– shared page is readable: may be replicated on multiple
machines.

– shared page is writable: only one copy is changed.
 External memory manager – NetMemServer – Handles

shared read-write from different machines willing to
share memory.

System CallsSystem Calls
 Traps to the kernel.
 Upcalls into emulation

library(USER LEVEL).
 Switch to any thread

waiting on a port for
operations like disk
writes.

 Returns to emulation
library.

 Returns from trap.
 System call is slow

compared to traditional
systems.

SummarySummary
 Unix code – evicted from the kernel – can be replaced by

another code at the user level.
 Successful in implementing multiprocessing and distributed

computing.
 Extensibility at the expense of speed.
 Integrated memory management and IPC.
 IPC (message passing, system calls are very SLOW.

BSDBSD
 Berkeley Software Distribution (BSD, sometimes called Berkeley Unix) is a Unix

operating system derivative developed and distributed by the Computer Systems
Research Group (CSRG) of the University of California, Berkeley, from 1977 to 1995.
Today the term "BSD" is often used non-specifically to refer to any of the BSD
descendants which together form a branch of the family of Unix-like operating systems.
Operating systems derived from the original BSD code remain
actively developed and widely used.

 Historically, BSD has been considered a branch of UNIX—
"BSD UNIX", because it shared the initial codebase and
design with the original AT&T UNIX operating system. In the
1980s, BSD was widely adopted by vendors of workstation-
class systems in the form of proprietary UNIX variants such
as DEC ULTRIX and Sun Microsystems SunOS. This can be
attributed to the ease with which it could be licensed, and the
familiarity it found among the founders of many technology
companies of this era.

ApplicationApplication
 MACH is used in invoking kernel

operations.
 Used in Task and Thread

Management

Scope of ResearchScope of Research
 Process Management in MACH
 Unix emulation in MACH
 Binary level operating system

emulation.

