
Consistency and ReplicationConsistency and Replication



Object Replication (1)Object Replication (1)

Organization of a distributed remote object 
shared by two different clients.



Object Replication (2)Object Replication (2)

a) A remote object capable of handling concurrent invocations on its own.
b) A remote object for which an object adapter is required to handle 

concurrent invocations



Object Replication (3)Object Replication (3)

a) A distributed system for replication-aware distributed 
objects.

b) A distributed system responsible for replica management



DataData--Centric Consistency Centric Consistency 
ModelsModels
The general organization of a logical data 

store, physically distributed and replicated 
across multiple processes.



Strict ConsistencyStrict Consistency

Behavior of two processes, operating on the same data item.
 A strictly consistent store.
 A store that is not strictly consistent.



Linearizability and Sequential Linearizability and Sequential 
Consistency (1)Consistency (1)

a) A sequentially consistent data store.
b) A data store that is not sequentially 

consistent.



Linearizability and Sequential Linearizability and Sequential 
Consistency (2)Consistency (2)

Three concurrently executing processes.

Process P1 Process P2 Process P3

x = 1;
print ( y, z);

y = 1;
print (x, z);

z = 1;
print (x, y);



Linearizability and Sequential Linearizability and Sequential 
Consistency (3)Consistency (3)
Four valid execution sequences for the 

processes of the previous slide.  The 
vertical axis is time.x = 1;

print ((y, z);
y = 1;
print (x, z);
z = 1;
print (x, y);

Prints:  001011

Signature:
001011

(a)

x = 1;
y = 1;
print (x,z);
print(y, z);
z = 1;
print (x, y);

Prints: 101011

Signature:
101011

(b)

y = 1;
z = 1;
print (x, y);
print (x, z);
x = 1;
print (y, z);

Prints: 010111

Signature:
110101

(c)

y = 1;
x = 1;
z = 1;
print (x, z);
print (y, z);
print (x, y);

Prints: 111111

Signature:
111111

(d)



Casual Consistency (1)Casual Consistency (1)

Necessary condition:
Writes that are potentially 
casually related must be seen by 
all processes in the same order.  
Concurrent writes may be seen 
in a different order on different 
machines.



Casual Consistency (2)Casual Consistency (2)

This sequence is allowed with a casually-consistent 
store, but not with sequentially or strictly consistent 
store.



Casual Consistency (3)Casual Consistency (3)

a) A violation of a casually-consistent store.
b) A correct sequence of events in a casually-consistent 

store.



FIFO Consistency (1)FIFO Consistency (1)

Necessary Condition:
Writes done by a single process are 
seen by all other processes in the 
order in which they were issued, but 
writes from different processes may 
be seen in a different order by 
different processes.



FIFO Consistency (2)FIFO Consistency (2)

A valid sequence of events of FIFO consistency



FIFO Consistency (3)FIFO Consistency (3)

Statement execution as seen by the three processes from the 
previous slide.  The statements in bold are the ones that 
generate the output shown.

x = 1;
print (y, z);
y = 1;
print(x, z);
z = 1;
print (x, y);

Prints: 00

(a)

x = 1;
y = 1;
print(x, z);
print ( y, z);
z = 1;
print (x, y);

Prints: 10

(b)

y = 1;
print (x, z);
z = 1;
print (x, y);
x = 1;
print (y, z);

Prints:  01

(c)



FIFO Consistency (4)FIFO Consistency (4)

Two concurrent processes.

Process P1 Process P2
x = 1;
if (y == 0) kill (P2);

y = 1;
if (x == 0) kill (P1);



Weak Consistency (1)Weak Consistency (1)
Properties:
 Accesses to synchronization variables 

associated with a data store are 
sequentially consistent

 No operation on a synchronization 
variable is allowed to be performed until 
all previous writes have been completed 
everywhere

 No read or write operation on data items 
are allowed to be performed until all 
previous operations to synchronization 
variables have been performed.



Weak Consistency (2)Weak Consistency (2)

A program fragment in which some variables may 
be kept in registers.

int a, b, c, d, e, x, y; /* variables */
int *p, *q; /* pointers */
int f( int *p, int *q); /* function prototype */

a = x * x; /* a stored in register */
b = y * y; /* b as well */
c = a*a*a + b*b + a * b; /* used later */
d = a * a * c; /* used later */
p = &a; /* p gets address of a */
q = &b /* q gets address of b */
e = f(p, q) /* function call */



Weak Consistency (3)Weak Consistency (3)

a) A valid sequence of events for weak 
consistency.

b) An invalid sequence for weak consistency.



Release Consistency (1)Release Consistency (1)

A valid event sequence  for release consistency.



Release Consistency (2)Release Consistency (2)
Rules:
 Before a read or write operation on shared 

data is performed, all previous acquires 
done by the process must have completed 
successfully.

 Before a release is allowed to be performed, 
all previous reads and writes by the process 
must have completed

 Accesses to synchronization variables are 
FIFO consistent (sequential consistency is 
not required).



Entry Consistency (1)Entry Consistency (1)
Conditions:
 An acquire access of a synchronization variable is not 

allowed to perform with respect to a process until all 
updates to the guarded shared data have been 
performed with respect to that process.

 Before an exclusive mode access to a synchronization 
variable by a process is allowed to perform with respect 
to that process, no other process may hold the 
synchronization variable, not even in nonexclusive 
mode.

 After an exclusive mode access to a synchronization 
variable has been performed, any other process's next 
nonexclusive mode access to that synchronization 
variable may not be performed until it has performed 
with respect to that variable's owner.



Entry Consistency (1)Entry Consistency (1)

A valid event sequence for entry consistency.



Summary of Consistency Summary of Consistency 
ModelsModels

a) Consistency models not using synchronization operations.
b) Models with synchronization operations.

Consistency Description

Strict Absolute time ordering of all shared accesses matters.

Linearizability All processes must see all shared accesses in the same order.  Accesses are 
furthermore ordered according to a (nonunique) global timestamp

Sequential All processes see all shared accesses in the same order.  Accesses are not ordered in 
time

Causal All processes see causally-related shared accesses in the same order.

FIFO All processes see writes from each other in the order they were used.  Writes from 
different processes may not always be seen in that order

(a)

Consistency Description

Weak Shared data can be counted on to be consistent only after a synchronization is done

Release Shared data are made consistent when a critical region is exited

Entry Shared data pertaining to a critical region are made consistent when a critical region is 
entered.

(b)



Eventual ConsistencyEventual Consistency

The principle of a mobile user accessing different 
replicas of a distributed database.



Monotonic ReadsMonotonic Reads

The read operations performed by a single process P at two different local copies of the same data 
store.

a) A monotonic-read consistent data store
b) A data store that does not provide monotonic reads.



Monotonic WritesMonotonic Writes

The write operations performed by a single process P at two different local copies of the same data 
store

a) A monotonic-write consistent data store.
b) A data store that does not provide monotonic-write consistency.



Read Your WritesRead Your Writes

a) A data store that provides read-your-writes 
consistency.

b) A data store that does not.



Writes Follow ReadsWrites Follow Reads

a) A writes-follow-reads consistent data store
b) A data store that does not provide writes-follow-reads consistency



Replica PlacementReplica Placement

The logical organization of different kinds of 
copies of a data store into three concentric 
rings.



ServerServer--Initiated ReplicasInitiated Replicas
Counting access requests from different 

clients.



Pull versus Push ProtocolsPull versus Push Protocols

A comparison between push-based and pull-based 
protocols in the case of multiple client, single server 
systems.

Issue Push-based Pull-based

State of server List of client replicas and caches None

Messages sent Update (and possibly fetch update later) Poll and update

Response time at 
client Immediate (or fetch-update time) Fetch-update time



RemoteRemote--Write Protocols (1)Write Protocols (1)

Primary-based remote-write protocol with a fixed server 
to which all read and write operations are forwarded.



RemoteRemote--Write Protocols (2)Write Protocols (2)

The principle of primary-backup protocol.



LocalLocal--Write Protocols (1)Write Protocols (1)

Primary-based local-write protocol in which a single copy is migrated between 
processes.



LocalLocal--Write Protocols (2)Write Protocols (2)

Primary-backup protocol in which the primary 
migrates to the process wanting to perform an 
update.



Active Replication (1)Active Replication (1)

The problem of replicated invocations.



Active Replication (2)Active Replication (2)

a) Forwarding an invocation request from a replicated 
object.

b) Returning a reply to a replicated object.



QuorumQuorum--Based ProtocolsBased Protocols

Three examples of the voting algorithm:
a) A correct choice of read and write set
b) A choice that may lead to write-write conflicts
c) A correct choice, known as ROWA (read one, write all)



OrcaOrca

A simplified stack object in Orca, with 
internal data and two operations.

OBJECT IMPLEMENTATION stack;
top: integer; # variable indicating the top
stack: ARRAY[integer 0..N-1] OF integer # storage for the stack

OPERATION push (item: integer) # function returning nothing
BEGIN

GUARD top < N DO
stack [top] := item; # push item onto the stack
top := top + 1; # increment the stack pointer

OD;
END;

OPERATION  pop():integer; # function returning an integer
BEGIN

GUARD top > 0 DO # suspend if the stack is empty
top := top – 1; # decrement the stack pointer
RETURN stack [top]; # return the top item

OD;
END;

BEGIN
top := 0; # initialization

END;



Management of Shared Objects Management of Shared Objects 
in Orcain Orca

Four cases of a process P performing an 
operation on an object O in Orca.



CasuallyCasually--Consistent Lazy Consistent Lazy 
ReplicationReplication

The general organization of a distributed data store.  Clients 
are assumed to also handle consistency-related 
communication.



Processing Read OperationsProcessing Read Operations
Performing a read operation at a local 

copy.



Processing Write OperationsProcessing Write Operations

Performing a write operation at a local copy.



ApplicationApplication
 consistency models are used in DS 

like distributed shared memory 
systems or distributed data stores 
(such as a file systems, databases, 
optimistic replication systems or Web 
caching).

 Consistency models define rules for 
the apparent order and visibility of 
updates, and it is a continuum with 
tradeoffs.



Scope of researchScope of research
 Selection-based Weak Sequential

Consistency Models for Distributed
Shared Memory

 Memory Consistency Models for
shared –memory multiprocessors.


