
DISTRIBUTED FILE SYSTEM

DISTRIBUTED FILE
SYSTEMS

DISTRIBUTED FILE SYSTEM

TopicsTopics
 Introduction
 File Service Architecture
 DFS: Case Studies

Case Study: Sun NFS
Case Study: The Andrew File System

DISTRIBUTED FILE SYSTEM

IntroductionIntroduction
 File system were originally developed for

centralized computer systems and desktop
computers.
 File system was as an operating system

facility providing a convenient
programming interface to disk storage.

DISTRIBUTED FILE SYSTEM

IntroductionIntroduction
 Distributed file systems support the

sharing of information in the form of files
and hardware resources.
 With the advent of distributed object

systems (CORBA, Java) and the web, the
picture has become more complex.
 Figure 1 provides an overview of types of

storage system.

DISTRIBUTED FILE SYSTEM

IntroductionIntroduction
Sharing Persis-

tence
Distributed
cache/replicas

Consistency
maintenance

Example

Main memory RAM
File system UNIX file system
Distributed file system Sun NFS

Web Web server

Distributed shared memory Ivy (Ch. 18)

Remote objects (RMI/ORB) CORBA

Persistent object store 1 CORBA Persistent
Object Service

Peer-to-peer storage system OceanStore(Ch. 10)

1

1
1

Figure 1. Storage systems and their properties
Types of consistency between copies: 1 - strict one-copy consistency

√ - approximate consistency
X - no automatic consistency

DISTRIBUTED FILE SYSTEM

IntroductionIntroduction
 Figure 2 shows a typical layered module

structure for the implementation of a non-
distributed file system in a conventional
operating system.

DISTRIBUTED FILE SYSTEM

IntroductionIntroduction

Directory module: relates file names to file IDs

File module: relates file IDs to particular files

Access control module: checks permission for operation requested

File access module: reads or writes file data or attributes

Block module: accesses and allocates disk blocks

Device module: disk I/O and buffering

Figure 2. File system modules

DISTRIBUTED FILE SYSTEM

IntroductionIntroduction
 File systems are responsible for the

organization, storage, retrieval, naming,
sharing and protection of files.
 Files contain both data and attributes.
 A typical attribute record structure is

illustrated in Figure 3.

DISTRIBUTED FILE SYSTEM

IntroductionIntroduction
File length

Creation timestamp
Read timestamp
Write timestamp

Attribute timestamp
Reference count

Owner
File type

Access control list

Figure 3. File attribute record structure

DISTRIBUTED FILE SYSTEM

IntroductionIntroduction
 Figure 4 summarizes the main operations

on files that are available to applications in
UNIX systems.

DISTRIBUTED FILE SYSTEM

IntroductionIntroduction

filedes = open(name, mode)
filedes = creat(name, mode)

Opens an existing file with the given name.
Creates a new file with the given name.
Both operations deliver a file descriptor referencing the open
file. The mode is read, write or both.

status = close(filedes) Closes the open file filedes.
count = read(filedes, buffer, n)
count = write(filedes, buffer, n)

Transfers n bytes from the file referenced by filedes to buffer.
Transfers n bytes to the file referenced by filedes from buffer.
Both operations deliver the number of bytes actually transferred
and advance the read-write pointer.

pos = lseek(filedes, offset,
whence)

Moves the read-write pointer to offset (relative or absolute,
depending on whence).

status = unlink(name) Removes the file name from the directory structure. If the file
has no other names, it is deleted.

status = link(name1, name2) Adds a new name (name2) for a file (name1).
status = stat(name, buffer) Gets the file attributes for file name into buffer.

Figure 4. UNIX file system operations

DISTRIBUTED FILE SYSTEM

IntroductionIntroduction
 Distributed File system requirements

 Related requirements in distributed file systems
are:

 Transparency
 Concurrency
 Replication
 Heterogeneity
 Fault tolerance
 Consistency
 Security
 Efficiency

DISTRIBUTED FILE SYSTEM

File Service ArchitectureFile Service Architecture
 An architecture that offers a clear separation of

the main concerns in providing access to files is
obtained by structuring the file service as three
components:

 A flat file service
 A directory service
 A client module.

 The relevant modules and their relationship is
shown in Figure 5.

DISTRIBUTED FILE SYSTEM

File Service ArchitectureFile Service Architecture
Client computer Server computer

Application
program

Application
program

Client module

Flat file service

Directory service

Figure 5. File service architecture

DISTRIBUTED FILE SYSTEM

File Service ArchitectureFile Service Architecture
 The Client module implements exported

interfaces by flat file and directory services on
server side.

 Responsibilities of various modules can be
defined as follows:

 Flat file service:
 Concerned with the implementation of operations on

the contents of file. Unique File Identifiers (UFIDs)
are used to refer to files in all requests for flat file
service operations. UFIDs are long sequences of bits
chosen so that each file has a unique among all of
the files in a distributed system.

DISTRIBUTED FILE SYSTEM

File Service ArchitectureFile Service Architecture
 Directory service:

 Provides mapping between text names for the files
and their UFIDs. Clients may obtain the UFID of a file
by quoting its text name to directory service.
Directory service supports functions needed
generate directories, to add new files to directories.

DISTRIBUTED FILE SYSTEM

File Service ArchitectureFile Service Architecture
 Client module:

 It runs on each computer and provides integrated
service (flat file and directory) as a single API to
application programs. For example, in UNIX hosts, a
client module emulates the full set of Unix file
operations.

 It holds information about the network locations of
flat-file and directory server processes; and achieve
better performance through implementation of a
cache of recently used file blocks at the client.

DISTRIBUTED FILE SYSTEM

File Service ArchitectureFile Service Architecture
 Flat file service interface:

 Figure 6 contains a definition of the interface to a flat
file service.

DISTRIBUTED FILE SYSTEM

File Service ArchitectureFile Service Architecture
Read(FileId, i, n) -> Data if 1≤i≤Length(File): Reads a sequence of up to n items

-throws BadPosition from a file starting at item i and returns it in Data.

Write(FileId, i, Data) if 1≤i≤Length(File)+1: Write a sequence of Data to a

-throws BadPosition file, starting at item i, extending the file if necessary.

Create() -> FileId Creates a new file of length0 and delivers a UFID for it.
Delete(FileId) Removes the file from the file store.
GetAttributes(FileId) -> Attr Returns the file attributes for the file.

SetAttributes(FileId, Attr) Sets the file attributes (only those attributes that are not

shaded in Figure 3.)

Figure 6. Flat file service operations

DISTRIBUTED FILE SYSTEM

File Service ArchitectureFile Service Architecture
 Access control

 In distributed implementations, access rights checks
have to be performed at the server because the
server RPC interface is an otherwise unprotected
point of access to files.

 Directory service interface
 Figure 7 contains a definition of the RPC interface to

a directory service.

DISTRIBUTED FILE SYSTEM

File Service ArchitectureFile Service Architecture
Lookup(Dir, Name) -> FileId Locates the text name in the directory and

-throws NotFound returns the relevant UFID. If Name is not in

the directory, throws an exception.

AddName(Dir, Name, File) If Name is not in the directory, adds(Name,File)

-throws NameDuplicate to the directory and updates the file’s attribute record.

If Name is already in the directory: throws an exception.

UnName(Dir, Name) If Name is in the directory, the entry containing Name

is removed from the directory.

If Name is not in the directory: throws an exception.

GetNames(Dir, Pattern) -> NameSeq Returns all the text names in the directory that match the

regular expression Pattern.

Figure 7. Directory service operations

DISTRIBUTED FILE SYSTEM

File Service ArchitectureFile Service Architecture
 Hierarchic file system

 A hierarchic file system such as the one that UNIX
provides consists of a number of directories arranged
in a tree structure.

 File Group
 A file group is a collection of files that can be located

on any server or moved between servers while
maintaining the same names.

– A similar construct is used in a UNIX file system.
– It helps with distributing the load of file serving

between several servers.
– File groups have identifiers which are unique

throughout the system (and hence for an open
system, they must be globally unique).

DISTRIBUTED FILE SYSTEM

File Service ArchitectureFile Service Architecture
To construct a globally unique
ID we use some unique
attribute of the machine on
which it is created, e.g. IP
number, even though the file
group may move subsequently.

IP address date

32 bits 16 bits
File Group ID:

DISTRIBUTED FILE SYSTEM

DFS: Case StudiesDFS: Case Studies
 NFS (Network File System)

 Developed by Sun Microsystems (in 1985)
 Most popular, open, and widely used.
 NFS protocol standardized through IETF (RFC 1813)

 AFS (Andrew File System)
 Developed by Carnegie Mellon University as part of Andrew

distributed computing environments (in 1986)
 A research project to create campus wide file system.
 Public domain implementation is available on Linux

(LinuxAFS)
 It was adopted as a basis for the DCE/DFS file system in

the Open Software Foundation (OSF, www.opengroup.org)
DEC (Distributed Computing Environment

http://www.opengroup.org)

DISTRIBUTED FILE SYSTEM

Case Study: Sun NFSCase Study: Sun NFS
 Figure 8 shows the architecture of Sun NFS.

DISTRIBUTED FILE SYSTEM

NFS architectureNFS architecture

Client computer Server computer

UNIX
file

system

NFS
client

NFS
server

UNIX
file

system

Application
program

Application
program

Virtual file systemVirtual file system

O
th

er
fil

e
sy

st
em

UNIX kernel

system calls

NFS protocol
(remote operations)

UNIX

Operations
on local files

Operations
on

remote files

*

UNIX kernel

Figure 8. NFS architecture

DISTRIBUTED FILE SYSTEM

Case Study: Sun NFSCase Study: Sun NFS
 The file identifiers used in NFS are called

file handles.

fh = file handle:

Filesystem identifier i-node number i-node generation

DISTRIBUTED FILE SYSTEM

Case Study: Sun NFSCase Study: Sun NFS
 A simplified representation of the RPC

interface provided by NFS version 3
servers is shown in Figure 9.

DISTRIBUTED FILE SYSTEM

Case Study: Sun NFSCase Study: Sun NFS
• read(fh, offset, count) -> attr, data
• write(fh, offset, count, data) -> attr
• create(dirfh, name, attr) -> newfh, attr
• remove(dirfh, name) status
• getattr(fh) -> attr
• setattr(fh, attr) -> attr
• lookup(dirfh, name) -> fh, attr
• rename(dirfh, name, todirfh, toname)
• link(newdirfh, newname, dirfh, name)
• readdir(dirfh, cookie, count) -> entries
• symlink(newdirfh, newname, string) -> status
• readlink(fh) -> string
• mkdir(dirfh, name, attr) -> newfh, attr
• rmdir(dirfh, name) -> status
• statfs(fh) -> fsstats

Figure 9. NFS server operations (NFS Version 3 protocol, simplified)

DISTRIBUTED FILE SYSTEM

Case Study: Sun NFSCase Study: Sun NFS
 NFS access control and authentication

 The NFS server is stateless server, so the user's
identity and access rights must be checked by the
server on each request.

 In the local file system they are checked only on the
file’s access permission attribute.

 Every client request is accompanied by the userID
and groupID

 It is not shown in the Figure 8.9 because they are
inserted by the RPC system.

 Kerberos has been integrated with NFS to provide
a stronger and more comprehensive security
solution.

DISTRIBUTED FILE SYSTEM

Case Study: Sun NFSCase Study: Sun NFS
 Mount service

 Mount operation:
mount(remotehost, remotedirectory, localdirectory)

 Server maintains a table of clients who have
mounted filesystems at that server.

 Each client maintains a table of mounted file
systems holding:

< IP address, port number, file handle>

 Remote file systems may be hard-mounted or
soft-mounted in a client computer.

 Figure 10 illustrates a Client with two remotely
mounted file stores.

DISTRIBUTED FILE SYSTEM

Case Study: Sun NFSCase Study: Sun NFS

jim janejoeann

usersstudents

usrvmunix

Client Server 2

. . . nfs

Remote

mount
staff

big bobjon

people

Server 1

export

(root)

Remote

mount

. . .

x

(root) (root)

Note: The file system mounted at /usr/students in the client is actually the sub-tree located at /export/people in Server 1;
the file system mounted at /usr/staff in the client is actually the sub-tree located at /nfs/users in Server 2.

Figure 10. Local and remote file systems accessible on an NFS client

DISTRIBUTED FILE SYSTEM

Case Study: Sun NFSCase Study: Sun NFS
 Automounter

 The automounter was added to the UNIX
implementation of NFS in order to mount a remote
directory dynamically whenever an ‘empty’ mount
point is referenced by a client.

 Automounter has a table of mount points with a
reference to one or more NFS servers listed against
each.

 it sends a probe message to each candidate server
and then uses the mount service to mount the
filesystem at the first server to respond.

 Automounter keeps the mount table small.

DISTRIBUTED FILE SYSTEM

Case Study: Sun NFSCase Study: Sun NFS
 Automounter Provides a simple form of replication

for read-only filesystems.
 E.g. if there are several servers with identical copies

of /usr/lib then each server will have a chance of
being mounted at some clients.

DISTRIBUTED FILE SYSTEM

Case Study: Sun NFSCase Study: Sun NFS
 Server caching

Similar to UNIX file caching for local files:
 pages (blocks) from disk are held in a main memory

buffer cache until the space is required for newer
pages. Read-ahead and delayed-write optimizations.

 For local files, writes are deferred to next sync event
(30 second intervals).

 Works well in local context, where files are always
accessed through the local cache, but in the remote
case it doesn't offer necessary synchronization
guarantees to clients.

DISTRIBUTED FILE SYSTEM

Case Study: Sun NFSCase Study: Sun NFS
NFS v3 servers offers two strategies for

updating the disk:
Write-through - altered pages are written to

disk as soon as they are received at the
server. When a write() RPC returns, the
NFS client knows that the page is on the
disk.

 Delayed commit - pages are held only in the
cache until a commit() call is received for
the relevant file. This is the default mode
used by NFS v3 clients. A commit() is
issued by the client whenever a file is
closed.

DISTRIBUTED FILE SYSTEM

Case Study: Sun NFSCase Study: Sun NFS
 Client caching

Server caching does nothing to reduce
RPC traffic between client and server
 further optimization is essential to reduce

server load in large networks.
 NFS client module caches the results of

read, write, getattr, lookup and readdir
operations

 synchronization of file contents (one-copy
semantics) is not guaranteed when two or
more clients are sharing the same file.

DISTRIBUTED FILE SYSTEM

Case Study: Sun NFSCase Study: Sun NFS
Timestamp-based validity check

 It reduces inconsistency, but doesn't
eliminate it.

 It is used for validity condition for cache
entries at the client:
(T - Tc < t) v (Tmclient = Tmserver)

t freshness guarantee
Tc time when cache entry was last

validated
Tm time when block was last

updated at server
T current time

DISTRIBUTED FILE SYSTEM

Case Study: Sun NFSCase Study: Sun NFS
 t is configurable (per file) but is typically set

to 3 seconds for files and 30 secs. for
directories.

 it remains difficult to write distributed
applications that share files with NFS.

DISTRIBUTED FILE SYSTEM

Case Study: Sun NFSCase Study: Sun NFS
 Other NFS optimizations

 Sun RPC runs over UDP by default (can use TCP
if required).

 Uses UNIX BSD Fast File System with 8-kbyte
blocks.

 reads() and writes() can be of any size
(negotiated between client and server).

 The guaranteed freshness interval t is set
adaptively for individual files to reduce getattr()
calls needed to update Tm.

 File attribute information (including Tm) is
piggybacked in replies to all file requests.

DISTRIBUTED FILE SYSTEM

Case Study: Sun NFSCase Study: Sun NFS
 NFS performance

 Early measurements (1987) established that:
 Write() operations are responsible for only 5% of

server calls in typical UNIX environments.
– hence write-through at server is acceptable.

 Lookup() accounts for 50% of operations -due to
step-by-step pathname resolution necessitated by
the naming and mounting semantics.

 More recent measurements (1993) show high
performance.

 see www.spec.org for more recent measurements.

http://www.spec.org

DISTRIBUTED FILE SYSTEM

Case Study: Sun NFSCase Study: Sun NFS
 NFS summary

NFS is an excellent example of a simple,
robust, high-performance distributed
service.

Achievement of transparencies are other
goals of NFS:
 Access transparency:

– The API is the UNIX system call interface for
both local and remote files.

DISTRIBUTED FILE SYSTEM

Case Study: Sun NFSCase Study: Sun NFS
 Location transparency:

– Naming of filesystems is controlled by client
mount operations, but transparency can be
ensured by an appropriate system configuration.

Mobility transparency:
– Hardly achieved; relocation of files is not

possible, relocation of filesystems is possible,
but requires updates to client configurations.

 Scalability transparency:
– File systems (file groups) may be subdivided

and allocated to separate servers.
Ultimately, the performance limit is determined
by the load on the server holding the most
heavily-used filesystem (file group).

DISTRIBUTED FILE SYSTEM

Case Study: Sun NFSCase Study: Sun NFS
 Replication transparency:

– Limited to read-only file systems; for writable
files, the SUN Network Information Service (NIS)
runs over NFS and is used to replicate essential
system files.

 Hardware and software operating system
heterogeneity:

– NFS has been implemented for almost every
known operating system and hardware platform
and is supported by a variety of filling systems.

 Fault tolerance:
– Limited but effective; service is suspended if a

server fails. Recovery from failures is aided by
the simple stateless design.

DISTRIBUTED FILE SYSTEM

Case Study: Sun NFSCase Study: Sun NFS
 Consistency:

– It provides a close approximation to one-copy
semantics and meets the needs of the vast
majority of applications.

– But the use of file sharing via NFS for
communication or close coordination between
processes on different computers cannot be
recommended.

 Security:
– Recent developments include the option to use

a secure RPC implementation for authentication
and the privacy and security of the data
transmitted with read and write operations.

DISTRIBUTED FILE SYSTEM

Case Study: Sun NFSCase Study: Sun NFS
 Efficiency:

–NFS protocols can be implemented for use in
situations that generate very heavy loads.

DISTRIBUTED FILE SYSTEM

Case Study: The Andrew File System (AFS)Case Study: The Andrew File System (AFS)

 Like NFS, AFS provides transparent
access to remote shared files for UNIX
programs running on workstations.
 AFS is implemented as two software

components that exist at UNIX processes
called Vice and Venus.
(Figure 11)

DISTRIBUTED FILE SYSTEM

Case Study: The Andrew File System (AFS)Case Study: The Andrew File System (AFS)

Venus

Workstations Servers

Venus

VenusUser
program

Network

UNIX kernel

UNIX kernel

Vice

User
program

User
program

Vice
UNIX kernel

UNIX kernel

UNIX kernel

Figure 11. Distribution of processes in the Andrew File System

DISTRIBUTED FILE SYSTEM

Case Study: The Andrew File System (AFS)Case Study: The Andrew File System (AFS)
 The files available to user processes running on

workstations are either local or shared.
 Local files are handled as normal UNIX files.
 They are stored on the workstation’s disk and

are available only to local user processes.
 Shared files are stored on servers, and copies of

them are cached on the local disks of
workstations.

 The name space seen by user processes is
illustrated in Figure 12.

DISTRIBUTED FILE SYSTEM

Case Study: The Andrew File System (AFS)Case Study: The Andrew File System (AFS)

/ (root)

tmp bin cmuvmunix. . .

bin

SharedLocal

Symbolic
links

Figure 12. File name space seen by clients of AFS

DISTRIBUTED FILE SYSTEM

Case Study: The Andrew File System (AFS)Case Study: The Andrew File System (AFS)
 The UNIX kernel in each workstation and server

is a modified version of BSD UNIX.
 The modifications are designed to intercept

open, close and some other file system calls
when they refer to files in the shared name
space and pass them to the Venus process in
the client computer.
(Figure 13)

DISTRIBUTED FILE SYSTEM

Case Study: The Andrew File System (AFS)Case Study: The Andrew File System (AFS)

UNIX file
system calls

Non-local file
operations

Workstation

Local
disk

User
program

UNIX kernel

Venus

UNIX file system

Venus

Figure 13. System call interception in AFS

DISTRIBUTED FILE SYSTEM

Case Study: The Andrew File System (AFS)Case Study: The Andrew File System (AFS)
 Figure 14 describes the actions taken by Vice,

Venus and the UNIX kernel when a user process
issues system calls.

DISTRIBUTED FILE SYSTEM

Case Study: The Andrew File System (AFS)Case Study: The Andrew File System (AFS)
User process UNIX kernel Venus Net Vice

open(FileName,
mode)

If FileName refers to a
file in shared file space,
pass the request to
Venus.

Open the local file and
return the file
descriptor to the
application.

Check list of files in
local cache. If not
present or there is no
valid callback promise ,
send a request for the
file to the Vice server
that is custodian of the
volume containing the
file.

Place the copy of the
file in the local file
system, enter its local
name in the local cache
list and return the local
name to UNIX.

Transfer a copy of the
file and a callback
promise to the
workstation. Log the
callback promise.

read(FileDescriptor,
Buffer, length)

Perform a normal
UNIX read operation
on the local copy.

write(FileDescriptor,
Buffer, length)

Perform a normal
UNIX write operation
on the local copy.

close(FileDescriptor) Close the local copy
and notify Venus that
the file has been closed. If the local copy has

been changed, send a
copy to the Vice server
that is the custodian of
the file.

Replace the file
contents and send a
callback to all other
clients holding c a l l b a c k
promises on the file.

Figure 14. implementation of file system calls in AFS

DISTRIBUTED FILE SYSTEM

Case Study: The Andrew File System (AFS)Case Study: The Andrew File System (AFS)
 Figure 15 shows the RPC calls provided by AFS

servers for operations on files.

DISTRIBUTED FILE SYSTEM

Case Study: The Andrew File System (AFS)Case Study: The Andrew File System (AFS)

Fetch(fid) -> attr, data Returns the attributes (status) and, optionally, the contents of file
identified by the fid and records a callback promise on it.

Store(fid, attr, data) Updates the attributes and (optionally) the contents of a specified
file.

Create() -> fid Creates a new file and records a callback promise on it.
Remove(fid) Deletes the specified file.
SetLock(fid, mode) Sets a lock on the specified file or directory. The mode of the

lock may be shared or exclusive. Locks that are not removed
expire after 30 minutes.

ReleaseLock(fid) Unlocks the specified file or directory.
RemoveCallback(fid) Informs server that a Venus process has flushed a file from its

cache.
BreakCallback(fid) This call is made by a Vice server to a Venus process. It cancels

the callback promise on the relevant file.

Figure 15. The main components of the Vice service interface

DISTRIBUTED FILE SYSTEM

ApplicationApplication
Distributed file systems can be advantageous because they make it easier to
distribute documents to multiple clients and they provide a centralized storage
system so that client machines are not using their resources to store files.
NFS from Sun Microsystems and Dfs from Microsoft are examples of
distributed file systems.

DISTRIBUTED FILE SYSTEM

Scope of ResearchScope of Research

1. Research on Implement Snapshot of pNFS Distributed File System
2. Scale and Performance in a Distributed File System
3. A Scalable Distributed File System for Cloud Computing

DISTRIBUTED FILE SYSTEM

ApplicationApplication

Distributed file systems can be advantageous because they make it
easier to distribute documents to multiple clients and they provide a
centralized storage system so that client machines are not using their
resources to store files.
NFS from Sun Microsystems and Dfs from Microsoft are examples of
distributed file systems.

