Distributed Real-Time Systems




What is distributed system?

e A set of nodes commun. through a network
 Network could be LAN or WAN

 Nodes could be homogeneous or heterogeneous




Why distributed systems?

« Applications themselves are distributed
— E.g., command and control, air traffic control

e High performance
— Better load balancing

« High avallability (fault-tolerance)
— No single point of failure




What are the problems with distributed systems?

 Resource management is difficult
— No global knowledge on workload
— No global knowledge on resource allocation

No synchronized clock (or clocks need to be
synchronized)

Asynchronous nature of the nodes

Communication related errors
— Out of order delivery of packets, packet loss, etc.

Difficult to distinguish network partition from node/link
failures




System model

The application is realized on a distributed system
Tasks arrive at each node independent of other nodes

Each node has resource manager for managing the
workload at local node and for facilitating migration of
workload to remote nodes

Nodes cooperate among themselves for meeting
tasks’ deadlines




Workload assumptions

e Periodic tasks and aperiodic tasks
Periodic messages and aperiodic messages

Task may have precedence constraints, resource and
FT requirements

The commn. pattern among two communicating
periodic tasks Is also periodic

Two communicating tasks could be scheduled on two
different nodes

Meeting tasks deadlines require bounding and
meeting message deadlines




Resource management in Distributed RT systems
(Node architecture)

* Local scheduling
— Resource management within a node

— Task scheduling, resource reclaiming, etc. (issues
discussed in chapters 2-4)

e Global scheduling
— Balancing load across nodes

— Transfer policy, selection policy, information policy,
and location policy

« Communication resource management
— QoS routing (channel setup time)
— Resource reservation (channel setup time)
— Packet scheduling (run-time)




Global scheduling

Goal: migrate tasks from a local node (when it is
heavily loaded) to a lightly loaded node

Transfer policy: when tasks are to be migrated from/to
local node to/from remote nodes

Selection policy: which tasks are to be migrated
Location policy: where tasks are to be migrated

Information policy: what information is exchanged
among nodes to realize task migration




Transfer policy

 Load index: the quantitative measure of node’s load
— Non-real-time systems: queue length, processor utilization
— Real-time systems: processor utilization, tasks’ laxity/deadline

« Transfer policy determines whether the current node Is suitable to
participate in a task migration either as a sender or as a receiver

e Threshold-based load index

Two thresholds (L-upper and L-lower) based on which a node’s load
Is classified as Light, Normal, or Overload

Light load implies the node could be a receiver for task migration
Heavy load implies the node is a sender for task migration
Normal load implies neither sender nor receiver

Fixing thresholds is hard




Transfer policy (contd.)

e Relative load index

— The load of a node In relation to system’s average
load

— If node’s load > SysAvgLoad + delta, the node is
overloaded; otherwise it Is under-loaded

— Average load could be misleading




Selection policy

Once transfer policy determines the current node Is
the sender of a task migration, selection policy decides
which tasks to migrate

While choosing the tasks, following needs to be
considered

— End-to-end delay: sum of local decision time, migration time,
remote decision time, and task’s execution time must be less
than task’s deadline

— Task’s affinity to node — e.g., the required resource must be
available at the remote node

— Task’s “value” — it is better meet deadlines of higher value
offering tasks




Location policy

 Choosing the receiver node for a task
migration

 There are several policies possible

— Random policy — select the receiver randomly

— Polling policy — poll the potential receivers of their
load in sequential or parallel

— Information based — based on the information
provided by the information policy




Information policy

 Nodes exchange state info so as to obtain global state

 Demand-driven policy

— A node collects state info from other nodes when it becomes a
sender or receiver for task migration

— Depends on node’s load state change to Light or Heavy

e State-driven policy
— Whenever node’s load state changes, it informs other nodes
— Similar to other demand-driven

« Periodic policy
— Nodes periodically exchange state info irrespective of their
states




Application

 In all embedded technology based
electronic equipments which Is timer
based.




Scope of Research

1. Real-Time CORBA

2. Safety of Data in Real-Time Distributed
Systems

3. Designing and debugging real-time
distributed systems




