Scheduling in Distributed
o System




> Distributed Scheduling




Introduction

 Good resource allocation schemes are
needed to fully utilize the computing
capacity of the DS

» Distributed scheduler is a resource
management component of a DOS

» It focuses on judiciously and transparently
redistributing the load of the system among
the computers

» Target is to maximize the overall
performance of the system

e More suitable for DS based on LANS



Motivation

» Alocally distributed system consists of a collection
of autonomous computers connected by a local
area communication network

« Users submit tasks at their host computers for
processing

» Load distributed is required in such environment
because of random arrival of tasks and their
random CPU service time

e There is a possibility that several computers are
heavily loaded and others are idle of lightly loaded

 |f the load is heavier on some systems or if some
processors execute tasks at a slower rate than
others, this situation will occur often



Distributed Systems Modeling

» Consider a system of N identical and
Independent servers

» |dentical means that all servers have the
same task arrival and service rates

 Let p be the utilization of each server, than
P=1- p, Is the probabillity that a server is idle

* If the p=0.6, It means that P=0.4,

« If the systems have different load than load
can be transferred from highly loaded
systems to lightly load systems to increase
the performance




Issues In Load Distribution

e Load

- Resource queue lengths and particularly the
CPU queue length are good indicators of load

- Measuring the CPU queue length is fairly simple
and carries little overhead

- CPU queue length does not always tell the
correct situation as the jobs may differ in types

> Another load measuring criterion is the processor
utilization

- Requires a background process that monitors
CPU utilization continuously and imposes more
overhead

- Used in most of the load balancing algorithms



Classification of LDA

» Basic function is to transfer load from
heavily loaded systems to idle or lightly
loaded systems

» These algorithms can be classified as

o Static

decisions are hard-wired in the algorithm using a prior
knowledge of the system

> Dynamic

use system state information to make load distributing
decisions

- Adaptive
special case of dynamic algorithms in that they adapt

their activities by dynamically changing the parameters
of the algorithm to suit the changing system state



Basic Terminologies

» Load Balancing vs. Load sharing

- Load sharing algorithms strive to reduce the
possibility for a system to go to a state in which it
lies idle while at the same time tasks contend
service at another, by transferring tasks to lightly
loaded nodes

- Load balancing algorithms try to equalize loads
at al computers

- Because a load balancing algorithm transfers
tasks at higher rate than a load sharing
algorithm, the higher overhead incurred by the
load balancing algorithm may outweigh this
potential performance improvement



Basic Terminologies (contd.)

» Preemptive vs. Non-preemptive transfer

- Preemptive task transfers involve the transfer of
a task that is partially executed

- Non-preemptive task transfers involve the
transfer of the tasks that have not begun
execution and hence do not require the transfer
of the task’s state

> Preemptive transfer is an expensive operation as
the collection of a task’s state can be difficult

- What does a task’s state consist of?

> Non-preemptive task transfers are also referred
to as task placements



Components of a Load Balancing
Algorithm

Transfer Policy

- determines whether a node is in a suitable state to participate in a
task transfer

> requires information on the local nodes’ state to make decisions
Selection Policy

> determines which task should be transferred

Location Policy

> determines to which node a task selected for transfer should be sent

> requires information on the states of remote nodes to make
decisions

Information policy
> responsible for triggering the collection of system state information
> Three types are: Demand-Driven, Periodic, State-Change-Driven




Stability

e The two views of stabllity are,

- The Queuing-Theoretic Perspective

A system is termed as unstable if the CPU
gueues grow without bound when the long term
arrival rate of work to a system is greater than
the rate at which the system can perform work.

> The Algorithmic Perspective

If an algorithm can perform fruitless actions
iIndefinitely with finite probability, the algorithm
IS said to be unstable.



Load Distributing Algorithms

e Sender-Initiated Algorithms

» Recelver-Initiated Algorithms

o Symmetrically Initiated Algorithms
» Adaptive Algorithms



Sender-Initiated Algorithms

» Activity is initiated by an overloaded node (sender)
» Atask is sent to an underloaded node (receiver)

o Transfer Policy

A node is identified as a sender if a new task
originating at the node makes the queue length exceed
a threshold T.

Selection Policy
Only new arrived tasks are considered for transfer

Location Policy

Random: dynamic location policy, no prior information
exchange

Threshold: polling a node (selected at random) to find
a receiver

Shortest: a group of nodes are polled to determine
their queue

Information Policy
A demand-driven type
Stability

Location policies adopted cause system instability at
high loads

o

o

o

o



Task
Arrives

No

Yes




Recelver-Initiated Algorithms

 Initiated from an underloaded node (receiver) to obtain a task
from an overloaded node (sender)

- Transfer Policy

Triggered when a task departs
Selection Policy

Same as the previous
Location Policy

A node selected at random is polled to determine if
transferring a task from it would place its queue length
below the threshold level, if not, the polled node transfers
a task.

Information Policy
A demand-driven type
Stability

Do not cause system instability in high system load,
however, in low load it spare CPU cycles

Most transfers are preemptive and therefore expensive

O

O

O

O



Yes

Task Departure at “j




Symmetrically Initiated
Algorithms

» Both senders and receivers search for
receiver and senders, respectively, for task
transfer.

» The Above-Average Algorithm

> Transfer Policy

Thresholds are equidistant from the node’s estimate of
the average load across all node.

> Location Policy

Sender-initiated component: Timeout messages
TooHigh, TooLow, Accept, AwaitingTask, ChangeAverage

Receiver-initiated component: Timeout messages
TooLow, LooHigh, Accept, AwaitingTask,
ChangeAverage

> Selection Policy
Similar to both the earlier algorithms

> Information Policy
A demand-driven tvpe but the accentable ranae can be



Adaptive Algorithms

» A Stable Symmetrically Initiated Algorithm

o

Utilizes the information gathered during polling to classify
the nodes in the system as either Sender, Receiver or OK.

The knowledge concerning the state of nodes is
maintained by a data structure at each node, comprised of
a senders list, a receivers list, and an OK list.

Initially, each node assumes that every other node is a

receiver.

Transfer Policy
Triggers when a new task originates or when a task departs.
Makes use of two threshold values, i.e. Lower (LT) and Upper
(UT)

Location Policy

Sender-initiated component: Polls the node at the head of
receiver’s list

Receiver-initiated component: Polling in three order
- Head-Tail (senders list), Tail-Head (OK list), Tail-Head (receivers list)

CAlantinn DAlirve NlAwidve areviAad tacl, ICIN AthAar annrAaan~rhAA



Task Migration

e Recelver-initiated task transfers can
Improve system performance at high
system loads.

» Recelver-initiated transfers require
preemptive task transfer.

> Task Placement refers to the transfer of a
task that Is yet to begin execution to a
new location and start its execution there.

- Task Migration refers to that transfer of a
task that has already begun execution to
a new location and continuing Its



Task Migration (contd.)

» Steps involved in Task Migration

o State Transfer

The transfer of the task’s state including
iInformation e.g. registers, stack, ready/blocked,
virtual memory address space, file descriptors,
buffered messages etc. to the new machine.

The task is frozen at some point during the
transfer so that the state does not change
further.

o Unfreeze

The task is installed at the new machine and is
put in the ready queue so that it can continue
executing.



Issues In Task Migration

» State Transfer

 Location Transparency

» Structure of a Migration Mechanism
» Performance



State Transfer

e The Cost

> To support remote execution, obtaining and transferring the state,
and unfreezing the task.

 Residual Dependencies

> Refers to the amount of resources a former host of a preempted
or migrated task continues to dedicate to service requests from
the migrated task.

* Implementations

> The V-System

Attempts to reduce the freezing time of a migrating task by precopying
the state.

The bulk of the task state is copied to the new host
It increases the number of messages that are sent to new host
o SPRITE

Makes use of the location-transparent file access mechanism provided
by its file system

All the modified pages of the migrating task are swapped to file server
o ACCENT

Reduction in migration is achieved by using a feature called Copy-on-
Reference

The entire virtual memory address space is not copied to the new host



Location Transparency

Services that are provided to user processes
Irrespective of the location of the processes and
services.

In distributed systems, it is essential that the
location transparency by supported.

Location transparency in principle requires that
names (e.g. process names, file names) be
iIndependent of their location (i.e. host names).

Any operation (such as signaling) or
communication that was possible before the
migration of a task should be possible after its
migration

Example — SPRITE — Location Transparency
Mechanisms
> Alocation-transparent distributed file system is provided

> The entire state of the migrating task is made available at
the new host, and therefore, any kernel calls made will be

laaAal At (aaver i aAs



Structure of a Migration Mechanism

» Issues involved in Migration Mechanisms

- Decision whether to separate the policy-making
modules from mechanism modules

It has implications for both performance and the ease of
development

The separation of policy and mechanism modules
simplifies the development efforts
- Decision to where the policy and mechanisms
should reside
The migration mechanism may best fit inside the kernel
Policy modules decide whether a task transfer should
occur, this can be placed in the kernel as well
> Interplay between the task migration mechanism
and various other mechanisms

The mechanisms can be designed to be independent of
one another so that if one mechanism’s protocol
changes, the other’s need not



Performance

» Comparing the performance of task
migration mechanisms implemented In
different systems is a difficult task,
because of the different,

o Hardware

SPRITE consists of a collection of
SPARCSTATION 1

CHARLOTTE consists of VAX/11-750
machines

- Operating systems
> |[PC mechanism
> File systems

o Pnlirnvi marhaniemec



Scope of Research

» Energy-Aware Scheduling of
Distributed Systems Using Cellular
Automata

» Challenges in parallel job scheduling



Application

» place scheduling applications behind
a log-in page and limit functionality
depending on the user.

e eliminating redundant data entry and
saving time.



