
Scheduling in Distributed Scheduling in Distributed
SystemSystem

Distributed SchedulingDistributed Scheduling

IntroductionIntroduction
 Good resource allocation schemes are

needed to fully utilize the computing
capacity of the DS

 Distributed scheduler is a resource
management component of a DOS

 It focuses on judiciously and transparently
redistributing the load of the system among
the computers

 Target is to maximize the overall
performance of the system

 More suitable for DS based on LANs

MotivationMotivation
 A locally distributed system consists of a collection

of autonomous computers connected by a local
area communication network

 Users submit tasks at their host computers for
processing

 Load distributed is required in such environment
because of random arrival of tasks and their
random CPU service time

 There is a possibility that several computers are
heavily loaded and others are idle of lightly loaded

 If the load is heavier on some systems or if some
processors execute tasks at a slower rate than
others, this situation will occur often

Distributed Systems ModelingDistributed Systems Modeling
 Consider a system of N identical and

independent servers
 Identical means that all servers have the

same task arrival and service rates
 Let ρ be the utilization of each server, than

P=1- ρ, is the probability that a server is idle
 If the ρ=0.6, it means that P=0.4,
 If the systems have different load than load

can be transferred from highly loaded
systems to lightly load systems to increase
the performance

Issues in Load DistributionIssues in Load Distribution
 Load
◦ Resource queue lengths and particularly the

CPU queue length are good indicators of load
◦ Measuring the CPU queue length is fairly simple

and carries little overhead
◦ CPU queue length does not always tell the

correct situation as the jobs may differ in types
◦ Another load measuring criterion is the processor

utilization
◦ Requires a background process that monitors

CPU utilization continuously and imposes more
overhead
◦ Used in most of the load balancing algorithms

Classification of LDAClassification of LDA
 Basic function is to transfer load from

heavily loaded systems to idle or lightly
loaded systems

 These algorithms can be classified as :
◦ Static
 decisions are hard-wired in the algorithm using a prior

knowledge of the system
◦ Dynamic
 use system state information to make load distributing

decisions
◦ Adaptive
 special case of dynamic algorithms in that they adapt

their activities by dynamically changing the parameters
of the algorithm to suit the changing system state

Basic TerminologiesBasic Terminologies
 Load Balancing vs. Load sharing
◦ Load sharing algorithms strive to reduce the

possibility for a system to go to a state in which it
lies idle while at the same time tasks contend
service at another, by transferring tasks to lightly
loaded nodes
◦ Load balancing algorithms try to equalize loads

at al computers
◦ Because a load balancing algorithm transfers

tasks at higher rate than a load sharing
algorithm, the higher overhead incurred by the
load balancing algorithm may outweigh this
potential performance improvement

Basic Terminologies (contd.)Basic Terminologies (contd.)
 Preemptive vs. Non-preemptive transfer
◦ Preemptive task transfers involve the transfer of

a task that is partially executed
◦ Non-preemptive task transfers involve the

transfer of the tasks that have not begun
execution and hence do not require the transfer
of the task’s state
◦ Preemptive transfer is an expensive operation as

the collection of a task’s state can be difficult
◦ What does a task’s state consist of?
◦ Non-preemptive task transfers are also referred

to as task placements

Components of a Load Balancing Components of a Load Balancing
AlgorithmAlgorithm

 Transfer Policy
◦ determines whether a node is in a suitable state to participate in a

task transfer
◦ requires information on the local nodes’ state to make decisions

 Selection Policy
◦ determines which task should be transferred

 Location Policy
◦ determines to which node a task selected for transfer should be sent
◦ requires information on the states of remote nodes to make

decisions
 Information policy
◦ responsible for triggering the collection of system state information
◦ Three types are: Demand-Driven, Periodic, State-Change-Driven

StabilityStability
 The two views of stability are,
◦ The Queuing-Theoretic Perspective
 A system is termed as unstable if the CPU

queues grow without bound when the long term
arrival rate of work to a system is greater than
the rate at which the system can perform work.

◦ The Algorithmic Perspective
 If an algorithm can perform fruitless actions

indefinitely with finite probability, the algorithm
is said to be unstable.

Load Distributing AlgorithmsLoad Distributing Algorithms
 Sender-Initiated Algorithms
 Receiver-Initiated Algorithms
 Symmetrically Initiated Algorithms
 Adaptive Algorithms

SenderSender--Initiated AlgorithmsInitiated Algorithms
 Activity is initiated by an overloaded node (sender)
 A task is sent to an underloaded node (receiver)
◦ Transfer Policy
 A node is identified as a sender if a new task

originating at the node makes the queue length exceed
a threshold T.

◦ Selection Policy
 Only new arrived tasks are considered for transfer

◦ Location Policy
 Random: dynamic location policy, no prior information

exchange
 Threshold: polling a node (selected at random) to find

a receiver
 Shortest: a group of nodes are polled to determine

their queue
◦ Information Policy
 A demand-driven type

◦ Stability
 Location policies adopted cause system instability at

high loads

Select Node “i”
randomly “i” is Poll-set

QueueLength+1
> T

Poll-set = Nil

Poll-set=Poll-set U “i” Poll Node “i”

QueueLength at “I”
< T

No. of polls
<

PollLimit

Queue the
task locally

Transfer task
to “i”

Yes

Yes

Yes

Yes

No

No

No

No

Task
Arrives

ReceiverReceiver--Initiated AlgorithmsInitiated Algorithms
 Initiated from an underloaded node (receiver) to obtain a task

from an overloaded node (sender)
◦ Transfer Policy
 Triggered when a task departs

◦ Selection Policy
 Same as the previous

◦ Location Policy
 A node selected at random is polled to determine if

transferring a task from it would place its queue length
below the threshold level, if not, the polled node transfers
a task.

◦ Information Policy
 A demand-driven type

◦ Stability
 Do not cause system instability in high system load,

however, in low load it spare CPU cycles
 Most transfers are preemptive and therefore expensive

Select Node “i”
randomly “i” is Poll-set

QueueLength
< T

Poll-set = Nil

Poll-set=Poll-set U “i” Poll Node “i”

QueueLength at “I”
> T

No. of polls
<

PollLimit

Wait for a
perdetermined period

Transfer task
from “i” to “j”

Yes

Yes

Yes

Yes

No

No

No

No

Task Departure at “j”

Symmetrically Initiated Symmetrically Initiated
AlgorithmsAlgorithms
 Both senders and receivers search for

receiver and senders, respectively, for task
transfer.

 The Above-Average Algorithm
◦ Transfer Policy
 Thresholds are equidistant from the node’s estimate of

the average load across all node.
◦ Location Policy
 Sender-initiated component: Timeout messages

TooHigh, TooLow, Accept, AwaitingTask, ChangeAverage
 Receiver-initiated component: Timeout messages

TooLow, LooHigh, Accept, AwaitingTask,
ChangeAverage

◦ Selection Policy
 Similar to both the earlier algorithms

◦ Information Policy
 A demand-driven type but the acceptable range can be

Adaptive AlgorithmsAdaptive Algorithms
 A Stable Symmetrically Initiated Algorithm
◦ Utilizes the information gathered during polling to classify

the nodes in the system as either Sender, Receiver or OK.
◦ The knowledge concerning the state of nodes is

maintained by a data structure at each node, comprised of
a senders list, a receivers list, and an OK list.

◦ Initially, each node assumes that every other node is a
receiver.

◦ Transfer Policy
 Triggers when a new task originates or when a task departs.
 Makes use of two threshold values, i.e. Lower (LT) and Upper

(UT)
◦ Location Policy
 Sender-initiated component: Polls the node at the head of

receiver’s list
 Receiver-initiated component: Polling in three order
 Head-Tail (senders list), Tail-Head (OK list), Tail-Head (receivers list)

◦ Selection Policy: Newly arrived task (SI), other approached

Task MigrationTask Migration
 Receiver-initiated task transfers can

improve system performance at high
system loads.

 Receiver-initiated transfers require
preemptive task transfer.
◦ Task Placement refers to the transfer of a

task that is yet to begin execution to a
new location and start its execution there.
◦ Task Migration refers to that transfer of a

task that has already begun execution to
a new location and continuing its
execution there.

Task Migration (contd.)Task Migration (contd.)
 Steps involved in Task Migration
◦ State Transfer
 The transfer of the task’s state including

information e.g. registers, stack, ready/blocked,
virtual memory address space, file descriptors,
buffered messages etc. to the new machine.

 The task is frozen at some point during the
transfer so that the state does not change
further.

◦ Unfreeze
 The task is installed at the new machine and is

put in the ready queue so that it can continue
executing.

Issues in Task MigrationIssues in Task Migration
 State Transfer
 Location Transparency
 Structure of a Migration Mechanism
 Performance

State TransferState Transfer
 The Cost
◦ To support remote execution, obtaining and transferring the state,

and unfreezing the task.
 Residual Dependencies
◦ Refers to the amount of resources a former host of a preempted

or migrated task continues to dedicate to service requests from
the migrated task.

 Implementations
◦ The V-System
 Attempts to reduce the freezing time of a migrating task by precopying

the state.
 The bulk of the task state is copied to the new host
 It increases the number of messages that are sent to new host

◦ SPRITE
 Makes use of the location-transparent file access mechanism provided

by its file system
 All the modified pages of the migrating task are swapped to file server

◦ ACCENT
 Reduction in migration is achieved by using a feature called Copy-on-

Reference
 The entire virtual memory address space is not copied to the new host

Location TransparencyLocation Transparency
 Services that are provided to user processes

irrespective of the location of the processes and
services.

 In distributed systems, it is essential that the
location transparency by supported.

 Location transparency in principle requires that
names (e.g. process names, file names) be
independent of their location (i.e. host names).

 Any operation (such as signaling) or
communication that was possible before the
migration of a task should be possible after its
migration

 Example – SPRITE – Location Transparency
Mechanisms
◦ A location-transparent distributed file system is provided
◦ The entire state of the migrating task is made available at

the new host, and therefore, any kernel calls made will be
local at new host

Structure of a Migration MechanismStructure of a Migration Mechanism
 Issues involved in Migration Mechanisms
◦ Decision whether to separate the policy-making

modules from mechanism modules
 It has implications for both performance and the ease of

development
 The separation of policy and mechanism modules

simplifies the development efforts
◦ Decision to where the policy and mechanisms

should reside
 The migration mechanism may best fit inside the kernel
 Policy modules decide whether a task transfer should

occur, this can be placed in the kernel as well
◦ Interplay between the task migration mechanism

and various other mechanisms
 The mechanisms can be designed to be independent of

one another so that if one mechanism’s protocol
changes, the other’s need not

PerformancePerformance
 Comparing the performance of task

migration mechanisms implemented in
different systems is a difficult task,
because of the different,
◦ Hardware
 SPRITE consists of a collection of

SPARCSTATION 1
 CHARLOTTE consists of VAX/11-750

machines
◦ Operating systems
◦ IPC mechanism
◦ File systems
◦ Policy mechanisms

Scope of ResearchScope of Research
 Energy-Aware Scheduling of

Distributed Systems Using Cellular
Automata

 Challenges in parallel job scheduling

ApplicationApplication
 place scheduling applications behind

a log-in page and limit functionality
depending on the user.

 eliminating redundant data entry and
saving time.

