
Scheduling in Distributed Scheduling in Distributed
SystemSystem

Distributed SchedulingDistributed Scheduling

IntroductionIntroduction
 Good resource allocation schemes are

needed to fully utilize the computing
capacity of the DS

 Distributed scheduler is a resource
management component of a DOS

 It focuses on judiciously and transparently
redistributing the load of the system among
the computers

 Target is to maximize the overall
performance of the system

 More suitable for DS based on LANs

MotivationMotivation
 A locally distributed system consists of a collection

of autonomous computers connected by a local
area communication network

 Users submit tasks at their host computers for
processing

 Load distributed is required in such environment
because of random arrival of tasks and their
random CPU service time

 There is a possibility that several computers are
heavily loaded and others are idle of lightly loaded

 If the load is heavier on some systems or if some
processors execute tasks at a slower rate than
others, this situation will occur often

Distributed Systems ModelingDistributed Systems Modeling
 Consider a system of N identical and

independent servers
 Identical means that all servers have the

same task arrival and service rates
 Let ρ be the utilization of each server, than

P=1- ρ, is the probability that a server is idle
 If the ρ=0.6, it means that P=0.4,
 If the systems have different load than load

can be transferred from highly loaded
systems to lightly load systems to increase
the performance

Issues in Load DistributionIssues in Load Distribution
 Load
◦ Resource queue lengths and particularly the

CPU queue length are good indicators of load
◦ Measuring the CPU queue length is fairly simple

and carries little overhead
◦ CPU queue length does not always tell the

correct situation as the jobs may differ in types
◦ Another load measuring criterion is the processor

utilization
◦ Requires a background process that monitors

CPU utilization continuously and imposes more
overhead
◦ Used in most of the load balancing algorithms

Classification of LDAClassification of LDA
 Basic function is to transfer load from

heavily loaded systems to idle or lightly
loaded systems

 These algorithms can be classified as :
◦ Static
 decisions are hard-wired in the algorithm using a prior

knowledge of the system
◦ Dynamic
 use system state information to make load distributing

decisions
◦ Adaptive
 special case of dynamic algorithms in that they adapt

their activities by dynamically changing the parameters
of the algorithm to suit the changing system state

Basic TerminologiesBasic Terminologies
 Load Balancing vs. Load sharing
◦ Load sharing algorithms strive to reduce the

possibility for a system to go to a state in which it
lies idle while at the same time tasks contend
service at another, by transferring tasks to lightly
loaded nodes
◦ Load balancing algorithms try to equalize loads

at al computers
◦ Because a load balancing algorithm transfers

tasks at higher rate than a load sharing
algorithm, the higher overhead incurred by the
load balancing algorithm may outweigh this
potential performance improvement

Basic Terminologies (contd.)Basic Terminologies (contd.)
 Preemptive vs. Non-preemptive transfer
◦ Preemptive task transfers involve the transfer of

a task that is partially executed
◦ Non-preemptive task transfers involve the

transfer of the tasks that have not begun
execution and hence do not require the transfer
of the task’s state
◦ Preemptive transfer is an expensive operation as

the collection of a task’s state can be difficult
◦ What does a task’s state consist of?
◦ Non-preemptive task transfers are also referred

to as task placements

Components of a Load Balancing Components of a Load Balancing
AlgorithmAlgorithm

 Transfer Policy
◦ determines whether a node is in a suitable state to participate in a

task transfer
◦ requires information on the local nodes’ state to make decisions

 Selection Policy
◦ determines which task should be transferred

 Location Policy
◦ determines to which node a task selected for transfer should be sent
◦ requires information on the states of remote nodes to make

decisions
 Information policy
◦ responsible for triggering the collection of system state information
◦ Three types are: Demand-Driven, Periodic, State-Change-Driven

StabilityStability
 The two views of stability are,
◦ The Queuing-Theoretic Perspective
 A system is termed as unstable if the CPU

queues grow without bound when the long term
arrival rate of work to a system is greater than
the rate at which the system can perform work.

◦ The Algorithmic Perspective
 If an algorithm can perform fruitless actions

indefinitely with finite probability, the algorithm
is said to be unstable.

Load Distributing AlgorithmsLoad Distributing Algorithms
 Sender-Initiated Algorithms
 Receiver-Initiated Algorithms
 Symmetrically Initiated Algorithms
 Adaptive Algorithms

SenderSender--Initiated AlgorithmsInitiated Algorithms
 Activity is initiated by an overloaded node (sender)
 A task is sent to an underloaded node (receiver)
◦ Transfer Policy
 A node is identified as a sender if a new task

originating at the node makes the queue length exceed
a threshold T.

◦ Selection Policy
 Only new arrived tasks are considered for transfer

◦ Location Policy
 Random: dynamic location policy, no prior information

exchange
 Threshold: polling a node (selected at random) to find

a receiver
 Shortest: a group of nodes are polled to determine

their queue
◦ Information Policy
 A demand-driven type

◦ Stability
 Location policies adopted cause system instability at

high loads

Select Node “i”
randomly “i” is Poll-set

QueueLength+1
> T

Poll-set = Nil

Poll-set=Poll-set U “i” Poll Node “i”

QueueLength at “I”
< T

No. of polls
<

PollLimit

Queue the
task locally

Transfer task
to “i”

Yes

Yes

Yes

Yes

No

No

No

No

Task
Arrives

ReceiverReceiver--Initiated AlgorithmsInitiated Algorithms
 Initiated from an underloaded node (receiver) to obtain a task

from an overloaded node (sender)
◦ Transfer Policy
 Triggered when a task departs

◦ Selection Policy
 Same as the previous

◦ Location Policy
 A node selected at random is polled to determine if

transferring a task from it would place its queue length
below the threshold level, if not, the polled node transfers
a task.

◦ Information Policy
 A demand-driven type

◦ Stability
 Do not cause system instability in high system load,

however, in low load it spare CPU cycles
 Most transfers are preemptive and therefore expensive

Select Node “i”
randomly “i” is Poll-set

QueueLength
< T

Poll-set = Nil

Poll-set=Poll-set U “i” Poll Node “i”

QueueLength at “I”
> T

No. of polls
<

PollLimit

Wait for a
perdetermined period

Transfer task
from “i” to “j”

Yes

Yes

Yes

Yes

No

No

No

No

Task Departure at “j”

Symmetrically Initiated Symmetrically Initiated
AlgorithmsAlgorithms
 Both senders and receivers search for

receiver and senders, respectively, for task
transfer.

 The Above-Average Algorithm
◦ Transfer Policy
 Thresholds are equidistant from the node’s estimate of

the average load across all node.
◦ Location Policy
 Sender-initiated component: Timeout messages

TooHigh, TooLow, Accept, AwaitingTask, ChangeAverage
 Receiver-initiated component: Timeout messages

TooLow, LooHigh, Accept, AwaitingTask,
ChangeAverage

◦ Selection Policy
 Similar to both the earlier algorithms

◦ Information Policy
 A demand-driven type but the acceptable range can be

Adaptive AlgorithmsAdaptive Algorithms
 A Stable Symmetrically Initiated Algorithm
◦ Utilizes the information gathered during polling to classify

the nodes in the system as either Sender, Receiver or OK.
◦ The knowledge concerning the state of nodes is

maintained by a data structure at each node, comprised of
a senders list, a receivers list, and an OK list.

◦ Initially, each node assumes that every other node is a
receiver.

◦ Transfer Policy
 Triggers when a new task originates or when a task departs.
 Makes use of two threshold values, i.e. Lower (LT) and Upper

(UT)
◦ Location Policy
 Sender-initiated component: Polls the node at the head of

receiver’s list
 Receiver-initiated component: Polling in three order
 Head-Tail (senders list), Tail-Head (OK list), Tail-Head (receivers list)

◦ Selection Policy: Newly arrived task (SI), other approached

Task MigrationTask Migration
 Receiver-initiated task transfers can

improve system performance at high
system loads.

 Receiver-initiated transfers require
preemptive task transfer.
◦ Task Placement refers to the transfer of a

task that is yet to begin execution to a
new location and start its execution there.
◦ Task Migration refers to that transfer of a

task that has already begun execution to
a new location and continuing its
execution there.

Task Migration (contd.)Task Migration (contd.)
 Steps involved in Task Migration
◦ State Transfer
 The transfer of the task’s state including

information e.g. registers, stack, ready/blocked,
virtual memory address space, file descriptors,
buffered messages etc. to the new machine.

 The task is frozen at some point during the
transfer so that the state does not change
further.

◦ Unfreeze
 The task is installed at the new machine and is

put in the ready queue so that it can continue
executing.

Issues in Task MigrationIssues in Task Migration
 State Transfer
 Location Transparency
 Structure of a Migration Mechanism
 Performance

State TransferState Transfer
 The Cost
◦ To support remote execution, obtaining and transferring the state,

and unfreezing the task.
 Residual Dependencies
◦ Refers to the amount of resources a former host of a preempted

or migrated task continues to dedicate to service requests from
the migrated task.

 Implementations
◦ The V-System
 Attempts to reduce the freezing time of a migrating task by precopying

the state.
 The bulk of the task state is copied to the new host
 It increases the number of messages that are sent to new host

◦ SPRITE
 Makes use of the location-transparent file access mechanism provided

by its file system
 All the modified pages of the migrating task are swapped to file server

◦ ACCENT
 Reduction in migration is achieved by using a feature called Copy-on-

Reference
 The entire virtual memory address space is not copied to the new host

Location TransparencyLocation Transparency
 Services that are provided to user processes

irrespective of the location of the processes and
services.

 In distributed systems, it is essential that the
location transparency by supported.

 Location transparency in principle requires that
names (e.g. process names, file names) be
independent of their location (i.e. host names).

 Any operation (such as signaling) or
communication that was possible before the
migration of a task should be possible after its
migration

 Example – SPRITE – Location Transparency
Mechanisms
◦ A location-transparent distributed file system is provided
◦ The entire state of the migrating task is made available at

the new host, and therefore, any kernel calls made will be
local at new host

Structure of a Migration MechanismStructure of a Migration Mechanism
 Issues involved in Migration Mechanisms
◦ Decision whether to separate the policy-making

modules from mechanism modules
 It has implications for both performance and the ease of

development
 The separation of policy and mechanism modules

simplifies the development efforts
◦ Decision to where the policy and mechanisms

should reside
 The migration mechanism may best fit inside the kernel
 Policy modules decide whether a task transfer should

occur, this can be placed in the kernel as well
◦ Interplay between the task migration mechanism

and various other mechanisms
 The mechanisms can be designed to be independent of

one another so that if one mechanism’s protocol
changes, the other’s need not

PerformancePerformance
 Comparing the performance of task

migration mechanisms implemented in
different systems is a difficult task,
because of the different,
◦ Hardware
 SPRITE consists of a collection of

SPARCSTATION 1
 CHARLOTTE consists of VAX/11-750

machines
◦ Operating systems
◦ IPC mechanism
◦ File systems
◦ Policy mechanisms

Scope of ResearchScope of Research
 Energy-Aware Scheduling of

Distributed Systems Using Cellular
Automata

 Challenges in parallel job scheduling

ApplicationApplication
 place scheduling applications behind

a log-in page and limit functionality
depending on the user.

 eliminating redundant data entry and
saving time.

