
ProcessesProcesses

Thread Usage in Nondistributed Thread Usage in Nondistributed
SystemsSystems
Context switching as the result of IPC

Thread ImplementationThread Implementation
Combining kernel-level lightweight processes and

user-level threads.

Multithreaded Servers (1)Multithreaded Servers (1)
A multithreaded server organized in a

dispatcher/worker model.

Multithreaded Servers (2)Multithreaded Servers (2)

Three ways to construct a server.

Model Characteristics

Threads Parallelism, blocking system calls

Single-threaded process No parallelism, blocking system calls

Finite-state machine Parallelism, nonblocking system calls

The XThe X--Window SystemWindow System
The basic organization of the X Window

System

ClientClient--Side Software for Distribution Side Software for Distribution
TransparencyTransparency
A possible approach to transparent replication

of a remote object using a client-side
solution.

Servers: General Design Servers: General Design
IssuesIssues

a) Client-to-server binding using a daemon as in DCE
b) Client-to-server binding using a superserver as in UNIX

3.7

Object Adapter (1)Object Adapter (1)
Organization of an object server supporting

different activation policies.

Object Adapter (2)Object Adapter (2)

The header.h file used by the adapter and
any program that calls an adapter.

/* Definitions needed by caller of adapter and adapter */
#define TRUE
#define MAX_DATA 65536

/* Definition of general message format */
struct message {

long source /* senders identity */
long object_id; /* identifier for the requested object */
long method_id; /* identifier for the requested method */
unsigned size; /* total bytes in list of parameters */
char **data; /* parameters as sequence of bytes */

};

/* General definition of operation to be called at skeleton of object */
typedef void (*METHOD_CALL)(unsigned, char* unsigned*, char**);

long register_object (METHOD_CALL call); /* register an object */
void unrigester_object (long object)id); /* unrigester an object */
void invoke_adapter (message *request); /* call the adapter */

Object Adapter (3)Object Adapter (3)

The thread.h file used by the adapter for using threads.

typedef struct thread THREAD; /* hidden definition of a thread */

thread *CREATE_THREAD (void (*body)(long tid), long thread_id);
/* Create a thread by giving a pointer to a function that defines the actual */
/* behavior of the thread, along with a thread identifier */

void get_msg (unsigned *size, char **data);
void put_msg(THREAD *receiver, unsigned size, char **data);
/* Calling get_msg blocks the thread until of a message has been put into its */
/* associated buffer. Putting a message in a thread's buffer is a nonblocking */
/* operation. */

Object Adapter (4)Object Adapter (4)
The main part of an adapter that implements a thread-per-

object policy.

Reasons for Migrating CodeReasons for Migrating Code
The principle of dynamically configuring a client to communicate

to a server. The client first fetches the necessary software,
and then invokes the server.

Models for Code MigrationModels for Code Migration

Alternatives for code
migration.

Migration and Local Migration and Local
ResourcesResources

Actions to be taken with respect to the references to
local resources when migrating code to another
machine.

Unattached Fastened Fixed

By identifier
By value
By type

MV (or GR)
CP (or MV, GR)
RB (or GR, CP)

GR (or MV)
GR (or CP)

RB (or GR, CP)

GR
GR

RB (or GR)

Resource-to machine binding

Process-to-
resource

binding

Migration in Heterogeneous Migration in Heterogeneous
SystemsSystems

The principle of maintaining a migration stack to support
migration of an execution segment in a heterogeneous
environment

3-15

Overview of Code Migration in D'Agents Overview of Code Migration in D'Agents
(1)(1)

A simple example of a Tel agent in D'Agents
submitting a script to a remote machine (adapted
from [gray.r95])

proc factorial n {
if ($n  1) { return 1; } # fac(1) = 1

expr $n * [factorial [expr $n – 1]] # fac(n) = n * fac(n – 1)

}

set number … # tells which factorial to compute

set machine … # identify the target machine

agent_submit $machine –procs factorial –vars number –script {factorial $number }

agent_receive … # receive the results (left unspecified for simplicity)

Overview of Code Migration in D'Agents Overview of Code Migration in D'Agents
(2)(2)

An example of a Tel agent in D'Agents migrating to different
machines where it executes the UNIX who command (adapted
from [gray.r95])

all_users $machines

proc all_users machines {
set list "" # Create an initially empty list
foreach m $machines { # Consider all hosts in the set of given machines

agent_jump $m # Jump to each host
set users [exec who] # Execute the who command
append list $users # Append the results to the list

}
return $list # Return the complete list when done

}

set machines … # Initialize the set of machines to jump to
set this_machine # Set to the host that starts the agent

Create a migrating agent by submitting the script to this machine, from where
it will jump to all the others in $machines.

agent_submit $this_machine –procs all_users
-vars machines
-script { all_users $machines }

agent_receive … #receive the results (left unspecified for simplicity)

Implementation Issues (1)Implementation Issues (1)
The architecture of the D'Agents

system.

Implementation Issues (2)Implementation Issues (2)
The parts comprising the state of an agent in

D'Agents.Status Description

Global interpreter variables Variables needed by the interpreter of an agent

Global system variables Return codes, error codes, error strings, etc.

Global program variables User-defined global variables in a program

Procedure definitions Definitions of scripts to be executed by an agent

Stack of commands Stack of commands currently being executed

Stack of call frames Stack of activation records, one for each running
command

Software Agents in Distributed Software Agents in Distributed
SystemsSystems

Some important properties by which different types of
agents can be distinguished.

Property Common to
all agents? Description

Autonomous Yes Can act on its own

Reactive Yes Responds timely to changes in its environment

Proactive Yes Initiates actions that affects its environment

Communicative Yes Can exchange information with users and other
agents

Continuous No Has a relatively long lifespan

Mobile No Can migrate from one site to another

Adaptive No Capable of learning

Agent TechnologyAgent Technology
The general model of an agent platform (adapted

from [fipa98-mgt]).

Agent Communication Languages (1)Agent Communication Languages (1)
Examples of different message types in the FIPA ACL [fipa98-

acl], giving the purpose of a message, along with the
description of the actual message content.

Message purpose Description Message
Content

INFORM Inform that a given proposition is true Proposition

QUERY-IF Query whether a given proposition is
true Proposition

QUERY-REF Query for a give object Expression

CFP Ask for a proposal Proposal
specifics

PROPOSE Provide a proposal Proposal

ACCEPT-PROPOSAL Tell that a given proposal is accepted Proposal ID

REJECT-PROPOSAL Tell that a given proposal is rejected Proposal ID

REQUEST Request that an action be performed Action
specification

SUBSCRIBE Subscribe to an information source Reference to
source

Agent Communication Agent Communication
Languages (2)Languages (2)

A simple example of a FIPA ACL message sent between two
agents using Prolog to express genealogy information.

Field Value

Purpose INFORM

Sender max@http://fanclub-beatrix.royalty-spotters.nl:7239

Receiver elke@iiop://royalty-watcher.uk:5623

Language Prolog

Ontology genealogy

Content female(beatrix),parent(beatrix,juliana,bernhard)

http://fanclub-beatrix.royalty-spotters.nl:7239
mailto:elke@iiop://royalty-watcher.uk:5623

Scope of researchScope of research
 Visualizing massively

multithreaded applications with
ThreadScope

ApplicationApplication

 The minimal collection of values
stored

in registers and memory, used for the
execution of a series of instructions
(i.e., processor context, state).

