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ClassificationClassification

 Deadlocks in DS are similar to deadlocks in processor systems, 
only worse.                                         

 -They are harder to avoid, prevent, or even detect, and harder to 
cure when tracked down because all the relevant information is 
scattered over many machines.

-In distributed data base systems, they can be extremely serious
 Some people make a distinction between two kinds of distributed 

deadlocks:
1. communication deadlocks

- Occurs, for example, when process A is trying to send a 
message to process B, which in turn is trying to send one to process 
C, which is trying to send one to A.

-There are various scenarios in which this situation leads to 
deadlock, such as no buffers being available.

2. resource deadlocks.
-Occurs when processes are fighting over exclusive access 

to I/O devices, files, locks, or other resources.



Look only to resource Look only to resource 
deadlocksdeadlocks
 Communication channels, buffers, and so on, are also 

resources and can be modeled as resource
-processes can request them and release them.

 Circular communication patterns of the type just 
described are quite rare in most systs:

-Example: client-server systems,
- a client might send a message (or perform an RPC) 

with a file
server, which might send a message to a disk server.
- it is unlikely that the disk server, acting as a client, would 

send a message to the original client, expecting it to act 
like a server.

 Circular wait condition is unlikely to occur as a result of 
communication alone.



Strategies are used to handle Strategies are used to handle 
deadlocksdeadlocks

1. The ostrich algorithm (ignore the problem):
-popular in DSs as it is in single-processor systems.
- no system-wide deadlock mechanism is present in DS 

used for programming, office automation, process control, 
and many other application
2. Detection (let deadlocks occur, detect them, and try to 
recover).

-also popular, primarily because prevention and 
avoidance are so difficult.
3. Prevention (statically make deadlocks structurally 

impossible).
-more difficult than in uni-processor systems.

4. Avoidance (avoid deadlocks by allocating resources 
carefully).

-never used in DS
 the problem is that the proposed algorithms need to know (in 

advance)
how much of each resource every process will eventually need 

– this information is rarely, if ever, available.



Distributed Deadlock Distributed Deadlock 
DetectionDetection
 When a deadlock is detected in a conventional OS, the way to 

resolve
it is to kill off one or more processes.

- Doing so invariably leads to one or more unhappy users.
 When a deadlock is detected in a system based on atomic 

transactions, it is resolved by aborting one or more transactions.
-But transactions have been designed to withstand being 

aborted.
- When a transaction is aborted because it contributes to a 

deadlock,
=  the system is first restored to the state it had before the 

transaction began,
= at which point the transaction can start again.
=It is probable that it will succeed the second time.

-> The difference is that the consequences of killing off a process are
much less severe when transactions are used than when they are not 

used.



Centralized Deadlock Centralized Deadlock 
DetectionDetection
 Try to imitate the non-distributed algorithm.
 Each machine maintains the resource graph for its own 

processes and resources,
 A central coordinator maintains the resource graph for 

the entire system (the union of all the individual graphs).
 Variants:
1. whenever an arc is added or deleted from the resource 

graph, a message can be sent to the coordinator 
providing the update.

2. periodically, every process can send a list of arcs added 
or deleted since the previous update – requires fewer 
messages than the first one.

3. the coordinator can ask for information when it needs it.
 When the coordinator detects a cycle, it kills off one 

process to break the deadlock.



False deadlockFalse deadlock
 Consider a system with processes A and B running on machine 0, and process C 

on machine 1.
 Three resources exist: R, S and T.
 Initially:

- A holds S but wants R, which it cannot have because B is using it;
- C has T and wants S, too.
- The coordinator's view of the world is shown in (c)
- This configuration is safe: as soon as B finishes, A can get R and 

finish, releasing S for C.
 After a while:

- B releases R and asks for T, a perfectly legal and safe swap.
- Machine 0 sends a message to the coordinator announcing the 

release of R,
- Machine 1 sends a message to the coordinator announcing the fact 

that B is now waiting for its resource, T.
- Unfortunately, the message from machine 1 arrives first, leading the 

coordinator to construct the graph of (d).
-The coordinator incorrectly concludes that a deadlock exists and kills 

some process.
 Such a situation is called a false deadlock.





Way out: use Way out: use Lamport’sLamport’s alg.alg.
 Since the message from machine 1 to the coordinator is triggered by

the request from machine 0, the message from machine 1 to the 
coordinator will have a later timestamp than the message from 
machine 0 to the coordinator.

 When the coordinator gets the message from machine 1 that leads it 
to

suspect deadlock,
- send a message to every machine in the system saying:

"I just received a message with timestamp T which leads to 
deadlock.

If anyone has a message for me with an earlier timestamp, 
please

send it immediately.“
 When every machine has replied, positively or negatively, the 

coordinator will see that the arc from R to B has vanished, so the 
system is still safe.

 Although this method eliminates the false deadlock, it requires global 
time and is expensive



Distrib.DeadlockDistrib.Deadlock Detection: Detection: 
ChandyChandy--MisraMisra--Haas alg.Haas alg.
 processes are allowed to request multiple resources (e.g. locks)
at once, instead of one at a time.

- by allowing multiple requests simultaneously, the growing 
phase of a

transaction can be speeded up considerably.
- the consequence of this change to the model is that a process 

may
now wait on two or more resources simultaneously.
 Example:

- a modified resource graph, where only the processes are 
shown

-each arc passes through a resource,
-for simplicity the resources have been omitted from the figure
-process 3 on machine 1 is waiting for two resources, one held 

by
process 4 and one held by process 5.





ExampleExample
 Some of the processes are waiting for local resources, such as process 1, but others,
such are process 2, are waiting for resources that are located on a different machine.

-These cross-machine arcs that make looking for cycles difficult.
 Alg. invoked when a process has to wait for some resource, for example, process 0
blocking on process 1.

-A special probe message is generated and sent to the process (or processes) holding the
needed resources.

- The message consists of three numbers: the process that just blocked, the process sending 
the

message, and the process to whom it is being sent.
-The initial message from to 1 contains the triple (0, 0, 1).
- When the message arrives, the recipient checks to see if it itself is waiting for any 

processes.
- If so, the message is updated, keeping the first field but replacing the second field by its 

own
process number and the third one by the number of the process it is waiting for.

- The message is then sent to the process on which it is blocked.
- If it is blocked on multiple processes, all of them are sent (different) messages.
- Remote messages labeled (0, 2, 3), (0, 4, 6), (0, 5, 7), and (0, 8, 0).
- If a message goes all the way around and comes back to the original sender, that is, the

process listed in the first field, a cycle exists and the system is deadlocked.



Broken the deadlock from the Broken the deadlock from the 
exampleexample
1. One way is to have the process that initiated the probe commit 

suicide.
- This method has problems if several processes invoke the algorithm 
simultaneously.

-Imagine that both 0 and 6 block at the same moment, and 
both 

initiate probes.
-Each would eventually discover the deadlock, and each 

would kill
itself – overkill !
2. An alternative algorithm is to have each process add its identityto the 

end of the probe message so that when it returned to the initial 
sender, the complete cycle would be listed.

-The sender can then see which process has the highest 
number,

and kill that one or send it a message asking it to kill itself.
- Either way, if multiple processes discover the same cycle at 

the
same time, they will all choose the same victim.



Distributed Deadlock Distributed Deadlock 
PreventionPrevention
 Consists of carefully designing the system so that deadlocks are 

structurally impossible
 Various techniques include:

- allowing processes to hold only one resource at a time,
- requiring processes to request all their resources initially, and
- making processes release all resources when asking for a new 

one.
-Most used: order all the resources and require processes to 

acquire
them in strictly increasing order.

=This approach means that a process can never hold a high 
resource and ask for a low one, thus making cycles impossible.

 In a DS with global time and atomic transactions, two other practical 
algorithms are possible

- based on the idea of assigning each transaction a global 
timestamp at the moment it starts.

-essential that no two trans-actions are ever assigned exactly 
the same timestamp



Algorithms ideaAlgorithms idea
 First idea:

- when one process is about to block waiting for a resource that another process is 
using, a check is made to see which has a larger timestamp (i.e. is younger).
- We can then allow the wait only if the waiting process has a lower timestamp (is 
older) than the process waited for.
- In this manner, following any chain of waiting processes, the timestamps always 
increase, so cycles are impossible.

 Alternatively:
- allow processes to wait only if the waiting process has a higher timestamp (is 

younger) than the process waited for, in which case the timestamps decrease 
along the chain.

 It is wiser to give priority to older processes.
- They have run longer, so the system has a larger investment in them, and they 

are likely to hold more resources.
- A young process that is killed off will eventually age until it is the oldest one in 

the system, so this choice eliminates starvation.
 Killing a transaction is relatively harmless, since by definition it can be restarted 

safely later.



Example for the alg. waitExample for the alg. wait--diedie
 (a): an old process wants a resource held by a young 

process.
 (b): a young process wants a resource held by an old 

process.
 In one case we should allow the process to wait; in the 

other we should kill it.
 Suppose that we label (a) dies and (b) wait.

- Then we are killing off an old process trying to use a 
resource held by a young process, which is inefficient.

 Thus we must label it the other way, as shown in the 
figure.

 Under these conditions, the arrows always point in the 
direction of increasing transaction numbers, making 
cycles impossible.

 This algorithm is called wait-die.





RemarkRemark
 Assuming the existence of transactions,

- it is possible to take resources away from 
running processes.

 When a conflict arises, instead of killing the 
process making the request, we can kill the 
resource owner.
- Without transactions, killing a process might 
have severe

consequences, since the process might have 
modified files,

for example.
- With transactions, these effects will vanish 

magically when the transaction dies.



Example for the alg. woundExample for the alg. wound--
waitwait
 Allow preemption
 A young whippersnapper will not preempt a venerable old sage
 One transaction is supposedly wounded (it is actually killed) and the 

other waits.
 If an old process wants a resource held by a young one, the old 

process preempts the young one, whose transaction is then killed
 The young one probably starts up again immediately, and tries to 

acquire the resource, forcing it to wait.
 Contrast with wait-die, where:

-if an oldtimer wants a resource held by a young squirt, the 
oldtimer waits politely.

- if the young one wants a resource held by the old one, the 
young one is killed.

- It will undoubtedly start up again and be killed again.
- This cycle may go on many times before the old one releases 

the resource.
Wound-wait does not have this nasty property.





ApplicationApplication
 Used in Distributed Transaction and 

Concurrency Control



Scope of ResearchScope of Research
 Novel Deadlock Detection Algorithm
 Deadlock avoidance for Distributed 

Real-Time and Embedded System


