
Atomic Transactions in Atomic Transactions in
Distributed SystemsDistributed Systems

Definition Definition –– TransactionTransaction
 A sequence of operations that perform

a single logical function
 Examples

 Withdrawing money from your account
 Making an airline reservation
 Making a credit-card purchase

 Usually used in context of databases

Definition Definition –– Atomic Atomic
TransactionTransaction
 A transaction that happens completely

or not at all
 No partial results

 Example:
 Cash machine hands you cash and deducts

amount from your account
 Airline confirms your reservation and
 Reduces number of free seats
 Charges your credit card
 (Sometimes) increases number of meals loaded on

flight
 …

Atomic Transaction ReviewAtomic Transaction Review
 Fundamental principles – A C I D
◦ Atomicity – to outside world, transaction

happens indivisibly
◦ Consistency – transaction preserves

system invariants
◦ Isolated – transactions do not interfere

with each other
◦ Durable – once a transaction “commits,”

the changes are permanent

Programming in a Transaction Programming in a Transaction
SystemSystem
 Begin_transaction

 Mark the start of a transaction

 End_transaction
 Mark the end of a transaction and try to “commit”

 Abort_transaction
 Terminate the transaction and restore old values

 Read
 Read data from a file, table, etc., on behalf of the

transaction

 Write
 Write data to file, table, etc., on behalf of the transaction

Programming in a Transaction Programming in a Transaction
System System (continued)(continued)
 As a matter of practice, separate

transactions are handled in separate
threads or processes

 Isolated property means that two
concurrent transactions are serialized
 I.e., they run in some indeterminate order with

respect to each other

 Commit- Changes are saved ,
resources are released; State is
consistent

 Abort -For an outsider, nothing
happened

Programming in a Transaction Programming in a Transaction
System System (continued)(continued)
 Nested Transactions

 One or more transactions inside another
transaction

 May individually commit, but may need to be
undone

 Example
 Planning a trip involving three flights
 Reservation for each flight “commits”

individually
 Must be undone if entire trip cannot commit

Tools for Implementing Atomic Tools for Implementing Atomic
Transactions Transactions (single system)(single system)
 Stable storage

 i.e., write to disk “atomically” (ppt, html)

 Log file
 i.e., record actions in a log before “committing”

them (ppt, html)
 Log in stable storage

 Locking protocols
 Serialize Read and Write operations of same

data by separate transactions
 …

Tools for Implementing Atomic Tools for Implementing Atomic
Transactions Transactions (continued)(continued)
 Begin_transaction

 Place a begin entry in log
 Write

 Write updated data to log
 Abort_transaction

 Place abort entry in log
 End_transaction (i.e., commit)

 Place commit entry in log
 Copy logged data to files
 Place done entry in log

Tools for Implementing Atomic Tools for Implementing Atomic
Transactions Transactions (continued)(continued)
 Crash recovery – search log
◦ If begin entry, look for matching entries
◦ If done, do nothing (all files have been

updated)
◦ If abort, undo any permanent changes

that transaction may have made
◦ If commit but not done, copy updated

blocks from log to files, then add done
entry

Distributed Atomic Distributed Atomic
TransactionsTransactions
 Atomic transactions that span multiple

sites and/or systems
 Same semantics as atomic

transactions on single system
 A C I D

 Failure modes
 Crash or other failure of one site or system
 Network failure or partition
 Byzantine failures

General Solution General Solution –– TwoTwo--phase phase
CommitCommit
 One site is elected coordinator of the

transaction T
 See Election algorithms (ppt, html)

 Phase 1: When coordinator is ready to
commit the transaction
 Place Prepare(T) state in log on stable storage
 Send Vote_request(T) message to all other

participants
 Wait for replies

TwoTwo--Phase Commit Phase Commit (continued)(continued)

 Phase 2: Coordinator
◦ If any participant replies Abort(T)
 Place Abort(T) state in log on stable storage
 Send Global_Abort(T) message to all

participants
 Locally abort transaction T
◦ If all participants reply

Ready_to_commit(T)
 Place Commit(T) state in log on stable storage
 Send Global_Commit(T) message to all

participants
 Proceed to commit transaction locally

TwoTwo--Phase Commit Phase Commit (continued)(continued)

 Phase I: Participant gets
Vote_request(T) from coordinator
 Place Abort(T) or Ready(T) state in local log
 Reply with Abort(T) or Ready_to_commit(T)

message to coordinator
 If Abort(T) state, locally abort transaction

 Phase II: Participant
 Wait for Global_Abort(T) or Global_Commit(T)

message from coordinator
 Place Abort(T) or Commit(T) state in local log
 Abort or commit locally per message

TwoTwo--Phase Commit StatesPhase Commit States

PREPARE

coordinator participant

Failure Recovery Failure Recovery –– TwoTwo--Phase Phase
CommitCommit
 Failure modes (from coordinator’s point of

view)
◦ Own crash
◦ Wait state: No response from some

participant to Vote_request message
 Failure modes (from participant’s point of

view)
◦ Own crash
◦ Ready state: No message from

coordinator to Global_Abort(T) or
Global_Commit(T)

Lack of Response to CoordinatorLack of Response to Coordinator
Vote_RequestVote_Request((TT) message) message
 E.g.,
◦ participant crash
◦ Network failure

 Timeout is considered equivalent to
Abort
◦ Place Abort(T) state in log on stable

storage
◦ Send Global_Abort(T) message to all

participants
◦ Locally abort transaction T

Coordinator CrashCoordinator Crash
 Inspect Log
 If Abort or Commit state
◦ Resend corresponding message
◦ Take corresponding local action

 If Prepare state, either
◦ Resend Vote_request(T) to all other participants

and wait for their responses; or
◦ Unilaterally abort transaction
 I.e., put Abort(T) in own log on stable store
 Send Global_Abort(T) message to all participants

 If nothing in log, abort transaction as above

No Response to Participant’s No Response to Participant’s
Ready_to_commitReady_to_commit((TT) message) message
 Re-contact coordinator, ask what to do
 If unable to contact coordinator, contact

other participants, ask if they know
 If any other participant is in Abort or Commit

state
 Take equivalent action

 Otherwise, wait for coordinator to restart!
◦ Participants are blocked, unable to go forward or

back
◦ Frozen in Ready state!

Participant CrashParticipant Crash
 Inspect local log
◦ Commit state:
 Redo/replay the transaction
◦ Abort state:
 Undo/abort the transaction
◦ No records about T:
 Same as local_abort(T)
◦ Ready State:
 Same as no response to Ready_to_commit(T)

message

TwoTwo--Phase Commit SummaryPhase Commit Summary
 Widely used in distributed transaction

and database systems
 Generally works well
◦ When coordinators are likely to reboot

quickly
◦ When network partition is likely to end

quickly

 Still subject to participant blocking

ThreeThree--Phase CommitPhase Commit
 Minor variation
 Widely quoted in literature
 Rarely implemented

 Because indefinite blocking due to coordinator
failures doesn’t happen very often in real life!

ThreeThree--Phase Commit Phase Commit
(continued)(continued)

PREPARE

•There is no state from which a transition can be made to either Commit or
Abort

•There is no state where it is not possible to make a final decision and from
which transition can be made to Commit.

ThreeThree--Phase Commit Phase Commit
(continued)(continued)
 Coordinator sends Vote_Request (as

before)
 If all participants respond affirmatively,

 Put Precommit state into log on stable storage
 Send out Prepare_to_Commit message to all

 After all participants acknowledge,
 Put Commit state in log
 Send out Global_Commit

ThreeThree--Phase Commit FailuresPhase Commit Failures
 Coordinator blocked in Ready state

 Safe to abort transaction

 Coordinator blocked in Precommit
state
 Safe to issue Global_Commit
 Any crashed or partitioned participants will

commit when recovered

 …

ThreeThree--Phase Commit Failures Phase Commit Failures
(continued)(continued)
 Participant blocked in Precommit state

 Contact others
 Collectively decide to commit

 Participant blocked in Ready state
 Contact others
 If any in Abort, then abort transaction
 If any in Precommit, the move to Precommit

state
 …

ThreeThree--Phase Commit Phase Commit
SummarySummary
 If any processes are in Precommit

state, then all crashed processes will
recover to
 Ready, Precommit, or Committed states

 If any process is in Ready state, then
all other crashed processes will
recover to
 Init, Abort, or Precommit
 Surviving processes can make collective

decision

ApplicationApplication
 managing atomic transactions

between distributed applications,
transaction managers and resource
managers.

