Atomic Transactions In
-~ Distributed Systems



Definition — Transaction

» A sequence of operations that perform
a single logical function

 Examples

Withdrawing money from your account
Making an airline reservation
Making a credit-card purchase

» Usually used in context of databases



Definition — Atomic

Transaction

A transaction that happens completely
or not at all
No partial results

» Example:

Cash machine hands you cash and deducts
amount from your account

Airline confirms your reservation and
- Reduces number of free seats
- Charges your credit card

- (Sometimes) increases number of meals loaded on
flight



Atomic Transaction Review

» Fundamental principles—-AC 1D
- Atomicity — to outside world, transaction
happens indivisibly
o Consistency — transaction preserves
system invariants

o |solated — transactions do not interfere
with each other

> Durable — once a transaction “commits,”
the changes are permanent



Programming in a Transaction
System

» Begin_transaction
Mark the start of a transaction

 End_transaction
Mark the end of a transaction and try to “commit”

» Abort_transaction
Terminate the transaction and restore old values

e Read

Read data from a file, table, etc., on behalf of the
transaction

o Write

Write data to file, table, etc., on behalf of the transaction



Programming in a Transaction

System (continued)

» As a matter of practice, separate
transactions are handled in separate
threads or processes

» Isolated property means that two

concurrent transactions are serialized

l.e., they run in some indeterminate order with
respect to each other



« Commit- Changes are saved
resources are released:; State Is
consistent

» Abort -For an outsider, nothing
happened



Programming in a Transaction

System (continued)

e Nested Transactions

One or more transactions inside another
transaction

May individually commit, but may need to be
undone

» Example

Planning a trip involving three flights

Reservation for each flight “commits”
iIndividually

Must be undone if entire trip cannot commit



Tools for Implementing Atomic

Transactions (single system)
» Stable storage

l.e., write to disk “atomically” (oo, )

e Log file
l.e., record actions in a log before “committing”
them (oo, )

Log in stable storage

 Locking protocols

Serialize Read and Write operations of same
data by separate transactions



Tools for Implementing Atomic

Transactions (continued)

» Begin_transaction
Place a begin entry in log
» Write
Write updated data to log

» Abort transaction
Place abort entry in log

 End_transaction (i.e., commit)
Place commit entry in log
Copy logged data to files
Place done entry in log



Tools for Implementing Atomic

Transactions (continued)

» Crash recovery — search log
> |If begin entry, look for matching entries

> |f done, do nothing (all files have been
updated)

o |f abort, undo any permanent changes
that transaction may have made

> |f commit but not done, copy updated
blocks from log to files, then add done
entry



Distributed Atomic

Transactions

o Atomic transactions that span multiple
sites and/or systems

o Same semantics as atomic

transactions on single system
ACID

 Failure modes
Crash or other failure of one site or system
Network failure or partition
Byzantine failures



General Solution — Two-phase

Commit
» One site Is elected coordinator of the
transaction T
See Election algorithms (opt, )
* Phase 1: When coordinator Is ready to

commit the transaction
Place Prepare(T) state in log on stable storage

Send Vote request(T) message to all other
participants

Wait for replies



Two-Phase Commit (continued)

e Phase 2: Coordinator

o |f any participant replies Abort(T)
Place Abort(T) state in log on stable storage

Send Global Abort(T) message to all
participants

Locally abort transaction T

o |f all participants reply
Ready to _commit(T)
Place Commit(T) state in log on stable storage

Send Global Commit(T) message to all
participants

Proceed to commit transaction locally



Two-Phase Commit (continued)

» Phase [: Participant gets

Vote request(T) from coordinator

Place Abort(T) or Ready(T) state in local log

Reply with Abort(T) or Ready _to_commit(T)
message to coordinator

If Abort(T) state, locally abort transaction
» Phase II: Participant

Wait for Global Abort(T) or Global Commit(T)
message from coordinator

Place Abort(T) or Commit(T) state in local log
Abort or commit locally per message



Two-Phase Commit States

: PREPAR
Commit
Vote-request

Vote-abort

Vote-commit

Global-abort Global-commit

COMMIT

(a)

coordinator

Vote-request
Vote-abort

Vote-request
Vote-commit

Global-abort
ACK

Global-commit
ACK

(b)

participant



Fallure Recovery — Two-Phase

Commit

e Fallure modes (from coordinator’s point of
view)

o Own crash

- Walt state: No response from some
participant to Vote request message

e Fallure modes (from participant’s point of
view)
> Own crash

- Ready state: No message from
coordinator to Global Abort(T) or
Global Commit(T)



Lack of Response to Coordinator

Vote Request(T) message
* E.0.,

o participant crash

- Network failure

» Timeout Is considered equivalent to
Abort

> Place Abort(T) state in log on stable
storage

- Send Global Abort(T) message to all
participants

- Locally abort transaction T



Coordinator Crash

* |Inspect Log

o If Abort or Commit state
- Resend corresponding message
- Take corresponding local action

« If Prepare state, either

- Resend Vote request(T) to all other participants
and wait for their responses; or

> Unilaterally abort transaction
l.e., put Abort(T) in own log on stable store
Send Global Abort(T) message to all participants

« If nothing in log, abort transaction as above



No Response to Participant’s
Ready to commit(T) message

e Re-contact coordinator, ask what to do

« If unable to contact coordinator, contact
other participants, ask if they know
o If any other participant is in Abort or Commit

state
Take equivalent action

o Otherwise, wait for coordinator to restart!

- Participants are blocked, unable to go forward or
back

> Frozen in Ready state!



Participant Crash

* Inspect local log
- Commit state:
Redo/replay the transaction
> Abort state:
Undo/abort the transaction
> No records about T:
Same as local_abort(T)

- Ready State:

Same as no response to Ready to_commit(T)
message



Two-Phase Commit Summary

» Widely used In distributed transaction
and database systems

o Generally works well

- When coordinators are likely to reboot
quickly

- When network partition is likely to end
quickly

» Still subject to participant blocking



Three-Phase Commit

e Minor variation
» Widely quoted In literature

» Rarely implemented

Because indefinite blocking due to coordinator
failures doesn’t happen very often in real life!



Three-Phase Commit
(continued)

Vote-request
Vote-abort

Vote-request
Vote-commit

READY

Commit
Vote-request

Prepare-commit
Prepare-commit Ready-commit

(PRECOMMIT) (PRECOMMIT)

Ready-commit Global-commit
Global-commit ACK
COMMIT COMMIT

(@) (b)

Global-abort
ACK

Vote-abort Vote-commit

Global-abort

*There is no state from which a transition can be made to either Commit or
Abort

*There is no state where it is not possible to make a final decision and from
which transition can be made to Commit.



Three-Phase Commit

(continued)

» Coordinator sends Vote Request (as
before)

o If all participants respond affirmatively,

Put Precommit state into log on stable storage
Send out Prepare_to_Commit message to all

» After all participants acknowledge,

Put Commit state in log
Send out Global Commit



Three-Phase Commit Failures

» Coordinator blocked in Ready state
Safe to abort transaction

e Coordinator blocked in Precommit

State

Safe to issue Global Commit

Any crashed or partitioned participants will
commit when recovered



Three-Phase Commit Falilures
(continued)

 Participant blocked in Precommit state
Contact others
Collectively decide to commit

 Participant blocked in Ready state
Contact others
If any in Abort, then abort transaction

If any in Precommit, the move to Precommit
state



Three-Phase Commit

Summary
e If any processes are in Precommit
state, then all crashed processes will

recover to
Ready, Precommit, or Committed states

o If any process Is In Ready state, then
all other crashed processes will

recover to

Init, Abort, or Precommit

Surviving processes can make collective
decision



Application

e managing atomic transactions
between distributed applications,
transaction managers and resource
managers.



