
Atomic Transactions in Atomic Transactions in
Distributed SystemsDistributed Systems

Definition Definition –– TransactionTransaction
 A sequence of operations that perform

a single logical function
 Examples

 Withdrawing money from your account
 Making an airline reservation
 Making a credit-card purchase

 Usually used in context of databases

Definition Definition –– Atomic Atomic
TransactionTransaction
 A transaction that happens completely

or not at all
 No partial results

 Example:
 Cash machine hands you cash and deducts

amount from your account
 Airline confirms your reservation and
 Reduces number of free seats
 Charges your credit card
 (Sometimes) increases number of meals loaded on

flight
 …

Atomic Transaction ReviewAtomic Transaction Review
 Fundamental principles – A C I D
◦ Atomicity – to outside world, transaction

happens indivisibly
◦ Consistency – transaction preserves

system invariants
◦ Isolated – transactions do not interfere

with each other
◦ Durable – once a transaction “commits,”

the changes are permanent

Programming in a Transaction Programming in a Transaction
SystemSystem
 Begin_transaction

 Mark the start of a transaction

 End_transaction
 Mark the end of a transaction and try to “commit”

 Abort_transaction
 Terminate the transaction and restore old values

 Read
 Read data from a file, table, etc., on behalf of the

transaction

 Write
 Write data to file, table, etc., on behalf of the transaction

Programming in a Transaction Programming in a Transaction
System System (continued)(continued)
 As a matter of practice, separate

transactions are handled in separate
threads or processes

 Isolated property means that two
concurrent transactions are serialized
 I.e., they run in some indeterminate order with

respect to each other

 Commit- Changes are saved ,
resources are released; State is
consistent

 Abort -For an outsider, nothing
happened

Programming in a Transaction Programming in a Transaction
System System (continued)(continued)
 Nested Transactions

 One or more transactions inside another
transaction

 May individually commit, but may need to be
undone

 Example
 Planning a trip involving three flights
 Reservation for each flight “commits”

individually
 Must be undone if entire trip cannot commit

Tools for Implementing Atomic Tools for Implementing Atomic
Transactions Transactions (single system)(single system)
 Stable storage

 i.e., write to disk “atomically” (ppt, html)

 Log file
 i.e., record actions in a log before “committing”

them (ppt, html)
 Log in stable storage

 Locking protocols
 Serialize Read and Write operations of same

data by separate transactions
 …

Tools for Implementing Atomic Tools for Implementing Atomic
Transactions Transactions (continued)(continued)
 Begin_transaction

 Place a begin entry in log
 Write

 Write updated data to log
 Abort_transaction

 Place abort entry in log
 End_transaction (i.e., commit)

 Place commit entry in log
 Copy logged data to files
 Place done entry in log

Tools for Implementing Atomic Tools for Implementing Atomic
Transactions Transactions (continued)(continued)
 Crash recovery – search log
◦ If begin entry, look for matching entries
◦ If done, do nothing (all files have been

updated)
◦ If abort, undo any permanent changes

that transaction may have made
◦ If commit but not done, copy updated

blocks from log to files, then add done
entry

Distributed Atomic Distributed Atomic
TransactionsTransactions
 Atomic transactions that span multiple

sites and/or systems
 Same semantics as atomic

transactions on single system
 A C I D

 Failure modes
 Crash or other failure of one site or system
 Network failure or partition
 Byzantine failures

General Solution General Solution –– TwoTwo--phase phase
CommitCommit
 One site is elected coordinator of the

transaction T
 See Election algorithms (ppt, html)

 Phase 1: When coordinator is ready to
commit the transaction
 Place Prepare(T) state in log on stable storage
 Send Vote_request(T) message to all other

participants
 Wait for replies

TwoTwo--Phase Commit Phase Commit (continued)(continued)

 Phase 2: Coordinator
◦ If any participant replies Abort(T)
 Place Abort(T) state in log on stable storage
 Send Global_Abort(T) message to all

participants
 Locally abort transaction T
◦ If all participants reply

Ready_to_commit(T)
 Place Commit(T) state in log on stable storage
 Send Global_Commit(T) message to all

participants
 Proceed to commit transaction locally

TwoTwo--Phase Commit Phase Commit (continued)(continued)

 Phase I: Participant gets
Vote_request(T) from coordinator
 Place Abort(T) or Ready(T) state in local log
 Reply with Abort(T) or Ready_to_commit(T)

message to coordinator
 If Abort(T) state, locally abort transaction

 Phase II: Participant
 Wait for Global_Abort(T) or Global_Commit(T)

message from coordinator
 Place Abort(T) or Commit(T) state in local log
 Abort or commit locally per message

TwoTwo--Phase Commit StatesPhase Commit States

PREPARE

coordinator participant

Failure Recovery Failure Recovery –– TwoTwo--Phase Phase
CommitCommit
 Failure modes (from coordinator’s point of

view)
◦ Own crash
◦ Wait state: No response from some

participant to Vote_request message
 Failure modes (from participant’s point of

view)
◦ Own crash
◦ Ready state: No message from

coordinator to Global_Abort(T) or
Global_Commit(T)

Lack of Response to CoordinatorLack of Response to Coordinator
Vote_RequestVote_Request((TT) message) message
 E.g.,
◦ participant crash
◦ Network failure

 Timeout is considered equivalent to
Abort
◦ Place Abort(T) state in log on stable

storage
◦ Send Global_Abort(T) message to all

participants
◦ Locally abort transaction T

Coordinator CrashCoordinator Crash
 Inspect Log
 If Abort or Commit state
◦ Resend corresponding message
◦ Take corresponding local action

 If Prepare state, either
◦ Resend Vote_request(T) to all other participants

and wait for their responses; or
◦ Unilaterally abort transaction
 I.e., put Abort(T) in own log on stable store
 Send Global_Abort(T) message to all participants

 If nothing in log, abort transaction as above

No Response to Participant’s No Response to Participant’s
Ready_to_commitReady_to_commit((TT) message) message
 Re-contact coordinator, ask what to do
 If unable to contact coordinator, contact

other participants, ask if they know
 If any other participant is in Abort or Commit

state
 Take equivalent action

 Otherwise, wait for coordinator to restart!
◦ Participants are blocked, unable to go forward or

back
◦ Frozen in Ready state!

Participant CrashParticipant Crash
 Inspect local log
◦ Commit state:
 Redo/replay the transaction
◦ Abort state:
 Undo/abort the transaction
◦ No records about T:
 Same as local_abort(T)
◦ Ready State:
 Same as no response to Ready_to_commit(T)

message

TwoTwo--Phase Commit SummaryPhase Commit Summary
 Widely used in distributed transaction

and database systems
 Generally works well
◦ When coordinators are likely to reboot

quickly
◦ When network partition is likely to end

quickly

 Still subject to participant blocking

ThreeThree--Phase CommitPhase Commit
 Minor variation
 Widely quoted in literature
 Rarely implemented

 Because indefinite blocking due to coordinator
failures doesn’t happen very often in real life!

ThreeThree--Phase Commit Phase Commit
(continued)(continued)

PREPARE

•There is no state from which a transition can be made to either Commit or
Abort

•There is no state where it is not possible to make a final decision and from
which transition can be made to Commit.

ThreeThree--Phase Commit Phase Commit
(continued)(continued)
 Coordinator sends Vote_Request (as

before)
 If all participants respond affirmatively,

 Put Precommit state into log on stable storage
 Send out Prepare_to_Commit message to all

 After all participants acknowledge,
 Put Commit state in log
 Send out Global_Commit

ThreeThree--Phase Commit FailuresPhase Commit Failures
 Coordinator blocked in Ready state

 Safe to abort transaction

 Coordinator blocked in Precommit
state
 Safe to issue Global_Commit
 Any crashed or partitioned participants will

commit when recovered

 …

ThreeThree--Phase Commit Failures Phase Commit Failures
(continued)(continued)
 Participant blocked in Precommit state

 Contact others
 Collectively decide to commit

 Participant blocked in Ready state
 Contact others
 If any in Abort, then abort transaction
 If any in Precommit, the move to Precommit

state
 …

ThreeThree--Phase Commit Phase Commit
SummarySummary
 If any processes are in Precommit

state, then all crashed processes will
recover to
 Ready, Precommit, or Committed states

 If any process is in Ready state, then
all other crashed processes will
recover to
 Init, Abort, or Precommit
 Surviving processes can make collective

decision

ApplicationApplication
 managing atomic transactions

between distributed applications,
transaction managers and resource
managers.

