
Remote Procedure CallRemote Procedure Call

RPCRPC

 Design issuesDesign issues

 ImplementationImplementation

 RPC programmingRPC programming

IntroductionIntroduction

 Remote Procedure Call (RPC) is a highRemote Procedure Call (RPC) is a high--level level
model for clientmodel for client--sever communication.sever communication.

 It provides the programmers with a familiar It provides the programmers with a familiar
mechanism for building distributed systems.mechanism for building distributed systems.

 Examples: File service, Authentication service.Examples: File service, Authentication service.

IntroductionIntroduction

 Why we need Remote Procedure Call (RPC)?Why we need Remote Procedure Call (RPC)?

–– The client needs a easy way to call the procedures The client needs a easy way to call the procedures
of the server to get some services.of the server to get some services.

–– RPC enables clients to communicate with servers RPC enables clients to communicate with servers
by by calling procedures in a similar waycalling procedures in a similar way to the to the
conventional use of procedure calls in highconventional use of procedure calls in high--level level
languages. languages.

–– RPC is modelled on the local procedure call, but RPC is modelled on the local procedure call, but
the called procedure is executed in a different the called procedure is executed in a different
process and usually a different computer.process and usually a different computer.

IntroductionIntroduction

 How to operate RPC?How to operate RPC?

–– When a process on machine A calls a procedure When a process on machine A calls a procedure
on machine B, the calling process on A is on machine B, the calling process on A is
suspended, and the execution of the called suspended, and the execution of the called
procedure takes place on B.procedure takes place on B.

–– Information can be transported from the caller to Information can be transported from the caller to
the callee in the parameters and can come back in the callee in the parameters and can come back in
the procedure result.the procedure result.

–– No message passing or I/O at all is visible to the No message passing or I/O at all is visible to the
programmer.programmer.

IntroductionIntroduction

 The RPC modelThe RPC model

Blocking state

client server
request

reply

Executing state

Call procedure
and wait for reply Receive request and

start process execution

Send reply and wait for
next executionResume

execution

CharacteristicsCharacteristics

 The called procedure is in another process The called procedure is in another process
which may reside in another machine.which may reside in another machine.

 The processes do not share address space.The processes do not share address space.
–– Passing of parameters by reference and passing Passing of parameters by reference and passing

pointer values are not allowed.pointer values are not allowed.
–– Parameters are passed by values.Parameters are passed by values.

 The called remote procedure executes within The called remote procedure executes within
the environment of the server process. the environment of the server process.
–– The called procedure does not have access to the The called procedure does not have access to the

calling procedure's environment.calling procedure's environment.

FeaturesFeatures

 Simple call syntaxSimple call syntax

 Familiar semanticsFamiliar semantics

 Well defined interfaceWell defined interface

 Ease of useEase of use

 EfficientEfficient

 Can communicate between processes on the Can communicate between processes on the
same machine or different machinessame machine or different machines

LimitationsLimitations

 Parameters passed by values only and pointer Parameters passed by values only and pointer
values are not allowed.values are not allowed.

 Speed: remote procedure calling (and return) Speed: remote procedure calling (and return)
time (i.e., overheads) can be significantly (1 time (i.e., overheads) can be significantly (1 --
3 orders of magnitude) slower than that for 3 orders of magnitude) slower than that for
local procedure. local procedure.

–– This may affect realThis may affect real--time design and the time design and the
programmer should be aware of its impact.programmer should be aware of its impact.

LimitationsLimitations

 Failure: RPC is more vulnerable to failure Failure: RPC is more vulnerable to failure
(since it involves communication system, (since it involves communication system,
another machine and another process). another machine and another process).

–– The programmer should be aware of the call The programmer should be aware of the call
semantics, i.e. programs that make use of RPC semantics, i.e. programs that make use of RPC
must have the capability of handling errors that must have the capability of handling errors that
cannot occur in local procedure calls.cannot occur in local procedure calls.

Design IssuesDesign Issues

 Exception handlingException handling

–– Necessary because of possibility of network and Necessary because of possibility of network and
nodes failures;nodes failures;

–– RPC uses return value to indicate errors;RPC uses return value to indicate errors;

 TransparencyTransparency

–– Syntactic Syntactic  achievable, exactly the same syntax achievable, exactly the same syntax
as a local procedure call;as a local procedure call;

–– Semantic Semantic  impossible because of RPC limitation: impossible because of RPC limitation:
failure (similar but not exactly the same);failure (similar but not exactly the same);

Design IssuesDesign Issues

 Delivery guaranteesDelivery guarantees

–– Retry request message: whether to retransmit the Retry request message: whether to retransmit the
request message until either a reply or the server request message until either a reply or the server
is assumed to have failed;is assumed to have failed;

–– Duplicate filtering : when retransmission are used, Duplicate filtering : when retransmission are used,
whether to filter out duplicates at the server;whether to filter out duplicates at the server;

–– Retransmission of replies: whether to keep a Retransmission of replies: whether to keep a
history of reply messages to enable lost replies to history of reply messages to enable lost replies to
be retransmitted without rebe retransmitted without re--executing the server executing the server
operations.operations.

Call SemanticsCall Semantics

 Maybe call semantics Maybe call semantics

–– After a RPC timeAfter a RPC time--out (or a client crashed and out (or a client crashed and
restarted), the client is not sure if the RP may or restarted), the client is not sure if the RP may or
may not have been called. may not have been called.

–– This is the case when no fault tolerance is built This is the case when no fault tolerance is built
into RPC mechanism. into RPC mechanism.

–– Clearly, maybe semantics is not desirable.Clearly, maybe semantics is not desirable.

Call SemanticsCall Semantics

 AtAt--leastleast--once call semanticsonce call semantics

–– With this call semantics, the client can assume With this call semantics, the client can assume
that the RP is executed at least once (on return that the RP is executed at least once (on return
from the RP).from the RP).

–– Can be implemented by retransmission of the Can be implemented by retransmission of the
(call) request message on time(call) request message on time--out. out.

–– Acceptable only if the server’s operations are Acceptable only if the server’s operations are
idempotent. That is f(x) = f(f(x)).idempotent. That is f(x) = f(f(x)).

Call SemanticsCall Semantics

 AtAt--mostmost--once call semanticsonce call semantics

–– When a RPC returns, it can assumed that the When a RPC returns, it can assumed that the
remote procedure (RP) has been called exactly remote procedure (RP) has been called exactly
once or not at all.once or not at all.

–– Implemented by the server's filtering of duplicate Implemented by the server's filtering of duplicate
requests (which are caused by retransmissions requests (which are caused by retransmissions
due to IPC failure, slow or crashed server) and due to IPC failure, slow or crashed server) and
caching of replies (in reply history, refer to RRA caching of replies (in reply history, refer to RRA
protocol). protocol).

Call SemanticsCall Semantics

–– This ensure the RP is called exactly once if the This ensure the RP is called exactly once if the
server does not crash during execution of the RP. server does not crash during execution of the RP.

–– When the server crashes during the RP's When the server crashes during the RP's
execution, the partial execution may lead to execution, the partial execution may lead to
erroneous results. erroneous results.

–– In this case, we want the effect that the RP has In this case, we want the effect that the RP has
not been executed at all.not been executed at all.

Delivery Guarantee (Summary)Delivery Guarantee (Summary)

Retry
request
message

Duplicate
filtering

Response RPC call
semantics

No Not
applicable

Not
applicable

Maybe

Yes No Re-execute
procedure

At-least-
once

Yes Yes Retransmit
reply

At-most-
once

RPC MechanismRPC Mechanism

 How does the client know the procedure How does the client know the procedure
(names) it can call and which parameters it (names) it can call and which parameters it
should provide from the server?should provide from the server?

 Server interface definitionServer interface definition
–– RPC interface specifies those characteristics of the RPC interface specifies those characteristics of the

procedures provided by a server that are visible to procedures provided by a server that are visible to
the clients. the clients.

–– The characteristics includes: names of the The characteristics includes: names of the
procedures and type of parameters. procedures and type of parameters.

–– Each parameter is defined as input or output.Each parameter is defined as input or output.

RPC MechanismRPC Mechanism

–– In summary, an interface contains a list of In summary, an interface contains a list of
procedure signatures procedure signatures -- the names and types of the names and types of
their I/O arguments (to be discussed later).their I/O arguments (to be discussed later).

–– This interface is made known to the clients This interface is made known to the clients
through a server process binder (to be discussed through a server process binder (to be discussed
later).later).

RPC MechanismRPC Mechanism

 How does the client transfer its call request How does the client transfer its call request
(the procedure name) and the arguments to (the procedure name) and the arguments to
the server via network?the server via network?

 Marshalling and communication with server:Marshalling and communication with server:

–– For each remote procedure call, a (client) stub For each remote procedure call, a (client) stub
procedure is generated and attached to the procedure is generated and attached to the
(client) program.(client) program.

–– Replace the remote procedure call to a (local) call Replace the remote procedure call to a (local) call
to the stub procedure.to the stub procedure.

RPC MechanismRPC Mechanism

–– The (codes in the) stub procedure marshals (the The (codes in the) stub procedure marshals (the
input) arguments and places them into a message input) arguments and places them into a message
together with the procedure identifier (of the together with the procedure identifier (of the
remote procedure).remote procedure).

–– Use IPC primitive to send the (call request) Use IPC primitive to send the (call request)
message to the server and wait the reply (call message to the server and wait the reply (call
return) message (DoOperation).return) message (DoOperation).

RPC MechanismRPC Mechanism

 How does the server react the request of the How does the server react the request of the
client? From which port? How to select the client? From which port? How to select the
procedure? How to interpret the arguments?procedure? How to interpret the arguments?

 Despatching, Unmarshalling, communication Despatching, Unmarshalling, communication
with client:with client:
–– A despatcher is provided. It receives the call A despatcher is provided. It receives the call

request message from the client and uses the request message from the client and uses the
procedure identifier in the message to select one procedure identifier in the message to select one
of the server stub procedures and passes on the of the server stub procedures and passes on the
arguments.arguments.

RPC MechanismRPC Mechanism

–– For each procedure at the server which is declared For each procedure at the server which is declared
(at the sever interface) as callable remotely, a (at the sever interface) as callable remotely, a
(server) stub procedure is generated.(server) stub procedure is generated.

–– The task of a server stub procedure is to The task of a server stub procedure is to
unmarshal the arguments, call the corresponding unmarshal the arguments, call the corresponding
(local) service procedure.(local) service procedure.

RPC MechanismRPC Mechanism

 How does the server transmit the reply back?How does the server transmit the reply back?

 On return, the stub marshals the output On return, the stub marshals the output
arguments into a reply (call return) message arguments into a reply (call return) message
and sends it back to the client.and sends it back to the client.

RPC MechanismRPC Mechanism

 How does the client receive the reply?How does the client receive the reply?

 The stub procedure of the client unmarshals The stub procedure of the client unmarshals
the result arguments and returns (local call the result arguments and returns (local call
return). Note that the original remote return). Note that the original remote
procedure call was transformed into a (local) procedure call was transformed into a (local)
call to the stub procedure.call to the stub procedure.

RPC MechanismRPC Mechanism

client
stub
proc.

Communication
module

Local
return

Local
call

Client computer Server computer

server
stub
proc.

client

service
procedure

Receive
reply

Send
request

Unmarshal
results

Marshal
arguments

Receive
request

Send
reply

Select procedure

Unmarshal
arguments

Marshal
results

Execute procedure

RPC Mechanism (Summary)RPC Mechanism (Summary)

1.1. The client provides the arguments and calls the The client provides the arguments and calls the
client stub in the normal way.client stub in the normal way.

2.2. The client stub builds (marshals) a message (call The client stub builds (marshals) a message (call
request) and traps to OS & network kernel.request) and traps to OS & network kernel.

3.3. The kernel sends the message to the remote kernel.The kernel sends the message to the remote kernel.
4.4. The remote kernel receives the message and gives it The remote kernel receives the message and gives it

to the server dispatcher.to the server dispatcher.
5.5. The dispatcher selects the appropriate server stub.The dispatcher selects the appropriate server stub.
6. 6. The server stub unpacks (unmarshals) the The server stub unpacks (unmarshals) the

parameters and call the corresponding server parameters and call the corresponding server
procedure.procedure.

RPC Mechanism (Summary)RPC Mechanism (Summary)

7.7. The server procedure does the work and returns the The server procedure does the work and returns the
result to the server stub.result to the server stub.

8.8. The server stub packs (marshals) it in a message The server stub packs (marshals) it in a message
(call return) and traps it to OS & network kernel.(call return) and traps it to OS & network kernel.

9.9. The remote (receiver) kernel sends the message to The remote (receiver) kernel sends the message to
the client kernel.the client kernel.

10.10.The client kernel gives the message to the client The client kernel gives the message to the client
stub.stub.

11.11.The client stub unpacks (unmarshals) the result and The client stub unpacks (unmarshals) the result and
returns to client.returns to client.

RPC ImplementationRPC Implementation

 Three main tasks:Three main tasks:

–– Interface processing: integrate the RPC Interface processing: integrate the RPC
mechanism with client and server programs in mechanism with client and server programs in
conventional programming languages.conventional programming languages.

–– Communication handling: transmitting and Communication handling: transmitting and
receiving request and reply messages.receiving request and reply messages.

–– Binding: locating an appropriate server for a Binding: locating an appropriate server for a
particular service.particular service.

RPC ImplementationRPC Implementation

 Interface ProcessingInterface Processing

–– Marshalling and unmarshalling of arguments;Marshalling and unmarshalling of arguments;

–– Dispatching of request messages to the Dispatching of request messages to the
appropriate procedure in the server;appropriate procedure in the server;

–– Interface compiler processes interface definitions Interface compiler processes interface definitions
written in an interface definition language written in an interface definition language
(msg.x);(msg.x);

–– Generate a client stub procedure (msg_clnt.c);Generate a client stub procedure (msg_clnt.c);

–– Generate a server stub procedure (msg_svc.c);Generate a server stub procedure (msg_svc.c);

RPC ImplementationRPC Implementation

–– Use the signatures of the procedures in the Use the signatures of the procedures in the
interface to generate marshalling and interface to generate marshalling and
unmarshalling operations (msg_xdr.c);unmarshalling operations (msg_xdr.c);

–– Generate procedure headings for each procedure Generate procedure headings for each procedure
in the service from the interface definition in the service from the interface definition
(msg.h);(msg.h);

 Communication handlingCommunication handling
–– TCP, UDP communicationTCP, UDP communication
–– Socket programmingSocket programming

RPC ImplementationRPC Implementation

 Binding Binding

–– It specifies a mapping from a name to a particular It specifies a mapping from a name to a particular
object usually identified by a communication ID.object usually identified by a communication ID.

–– Binding is important becauseBinding is important because
»» An interface definition specifies a textual service name An interface definition specifies a textual service name

for use by clients and servers.for use by clients and servers.
»» Clients that request message must be addressed to a Clients that request message must be addressed to a

server port.server port.

RPC ImplementationRPC Implementation

–– Binder: a separate service that maintains a table Binder: a separate service that maintains a table
containing mappings from service names to server containing mappings from service names to server
ports.ports.

–– All other services depend on the binder service.All other services depend on the binder service.

–– Binder interface used by serverBinder interface used by server
»» Register (String serviceName, Port serverPort, int Register (String serviceName, Port serverPort, int

version)version)
»» Withdraw (String serviceName, Port serverPort, int Withdraw (String serviceName, Port serverPort, int

version)version)

–– Binder interface used by clientBinder interface used by client
»» PortLookUp (String serviceName, int version)PortLookUp (String serviceName, int version)

Case Studies: SUN RPCCase Studies: SUN RPC

 Interface definition language: XDR Interface definition language: XDR
–– a standard way of encoding data in a portable a standard way of encoding data in a portable

fashion between different systems;fashion between different systems;

 Interface compiler: rpcgenInterface compiler: rpcgen
–– A compiler that takes the definition of a remote A compiler that takes the definition of a remote

procedure interface, and generates the client procedure interface, and generates the client
stubs and the server stubs;stubs and the server stubs;

 Communication handling: TCP or UDPCommunication handling: TCP or UDP
 Version: RPCSRC 3.9 (4.3BSD UNIX) Version: RPCSRC 3.9 (4.3BSD UNIX)

–– A runA run--time library to handle all the details.time library to handle all the details.

ApplicationApplication

 Remote Procedure Call (RPC) is a powerful Remote Procedure Call (RPC) is a powerful
technique for constructing distributed, technique for constructing distributed,
client/server based applications. client/server based applications.

Scope of ResearchScope of Research

 Open Network Computing Using Remote Open Network Computing Using Remote
Procedure CallProcedure Call

 Remote Procedure Remote Procedure Call Using OSICall Using OSI

