Introduction

What Is Distributed System

A distributed system Is:

A collection of independent computers that
appears to Its users as a single coherent
system.

More About Distributed System

Machine A Machine B Machine C

Distributed applications

Middleware service

Local OS Local OS Local OS

Metwork

A distributed system organized as middleware.
Note that the middleware layer extends over multiple machines.

Goals of Distributed System

» Connecting Users and Resources
» Transparency

» Openness

» Scalability

Transparency in a Distributed

Tra r Description
Hide differences in data representation and how a
Access :
resource is accessed
Location Hide where a resource is located
Migration Hide that a resource may move to another location
: Hide that a resource may be moved to another
Relocation : L
location while in use
L Hide that a resource may be shared by several
Replication .
competitive users
Hide that a resource may be shared by several
Concurrency »
competitive users
Failure Hide the failure and recovery of a resource

Persistence

Hide whether a (software) resource is in memory or
on disk

Different forms of transparency in a distributed system.

Scalability Problems

Concept Example
Centralized services A single server for all users
Centralized data A single on-line telephone book
Centralized algorithms Doing routing based on complete information

Examples of scalability limitations.

Scaling Techniqgues (1)

Client Server
FIRST NAME[MAARTEN | ’
LAST NAME [VaN STEEN | —»
E-MAIL [STEEN@ CS. VU NL | IEI—I»
E|—¥
=]
P k
Check form Process form
(a)
Client Server
FIRST NAME| MAARTEN |
LAST NAME [VaN sTEEN | e .
E-MAIL [STEEN@CS VU NL | STEEN@ECS. VUL ML
L=l >
Check form

(b)

The difference between letting:

da Server or

Process form

a client check forms as they are being filled

Scaling Techniques (2)

(seneric Countries
< > |« >

KJELJ com edu (9oV} KIEL)
sun Cac
ei fﬁ!?i?ii!! keio

ai linda S
roLnt pc2

An example of dividing the DNS name space into zones.

Hardware Concepts

Shared memory Private memory

m
M M M M M M M &
| | | | | | | S
T T 1 o] [r] 7] [7] |2
‘P P P P | | | |
w
g
‘I’u‘l ‘I’u‘l ‘I’u‘l M M M M 7
I 5
P P P P o
e
p| |P| |P| |P
P | Processor M| Memory

Different basic organizations and memories in distributed computer

systems

Multiprocessors (1)

Memory

CPU CPLU CPLU
Cache Cache Cache

Bus

Multiprocessors (2)

Memories
‘ M ‘ M ‘ M ‘ M CPUs Memories
P M
P I I
= i)
P) L —
CPUs P M
P SF } SF - -
. . / v
P aE — —
R ¥
Crosspoint switch 2x2 switch

(@) (b)

a) A crossbar switch
b) An omega switching network

{H b

Homogeneous Multicomputer
Systems

a) Grid
b) Hypercube

Software Concepts

System Description Main Goal
Tightly-coupled operating system for multi- Hide and manage
DOS processors and homogeneous hardware
multicomputers resources
Loosely-coupled operating system for Offer local
NOS heterogeneous multicomputers (LAN and services to remote
WAN) clients
. : : Provide
Middleware Additional layer atop pf NOS implementing distribution
general-purpose services
transparency

An overview of
« DOS (Distributed Operating Systems)
 NOS (Network Operating Systems)

» Middleware

Uniprocessor Operating Systems

No direct data exchange between modules

- ’ -

OS interface User Memory Process File module \U g
application module module Ser mode
A A A
= = - \
P Kernel mode
System call | Microkernel /
Hardware

Separating applications from operating system code
through

a microkernel.

Multiprocessor Operating
Systems (1)
A monitor to protect an integer against concurrent
access.
monitor Counter {
private:
int count = 0;
public:
int value() { return count;}
void incr () { count = count + 1;}

void decr() { count = count — 1;}

}

Multiprocessor Operating

Systems (2)
monitor Counter {
private:
int count = 0;
int blocked _procs = 0;
condition unblocked;
public:
int value () { return count;}
void incr () {
if (blocked_procs == 0)
count = count + 1;
else

signal (unblocked);

void decr() {

if (count ==0) {
blocked_procs = blocked procs + 1;
wait (unblocked);
blocked _procs = blocked procs — 1;
¥
else

count = count — 1;

¥
¥

A monitor to protect an integer against concurrent access, but blocking a process.

Multicomputer Operating
Systems (1)

General structure of a multicomputer
operating system

Machine A Machine B Machine C

Distributed applications

Distributed operating system services

Kernel Kernel Kernel

Network

Multicomputer Operating

Systems (2)

Alternatives for blocking and buffering in message
passing.

Sender

Sender

buffer |

Possible
synchronization
point —_]
S1 RS o4
|t
S2 #?:33

Network

Receiver

Receiver
buffer

Multicomputer Operating

Systems (3)

Synchronization point

Send buffer

Reliable comm.

guaranteed?
Block sender until buffer not full Yes Not necessary
Block sender until message sent No Not necessary
Block sender until message received No Necessary
Block sender until message delivered | No Necessary

Relation between blocking, buffering, and reliable

communications.

b)

Distributed Shared Memory

Systems (1)

Pages of address
space distributed
among four
machines

Situation after
CPU 1 references
page 10

Situation if page
10 is read only and
replication is used

Shared global address space

o] 1]2]3]|4]5]|6]7]|8]9|10/11/12[13|14]15]

<— Memory

[of2fs)f [[1]s]e]

9

CPU 1 CPU 2 CPU 3 CPU 4
@

of20s]f [[1]3]s]

9 |10]

CPUA1 CPU 2 CPU 3 CPU 4
(b)

of2]s]f [[1ls]e]

(o]0

CPUA1

CcPU3

CPU 4

(c)

Distributed Shared Memory
Systems (2)

False sharing of a page between two independent
processes.

Machine A Page transfer when Machine B
— B needs to be accessed -
il TR
— K/ffﬂ' =2 T Two independent
E »B 47| gataitems
Page transfer when T
Page p A needs to be accessed (Pagep|
‘ Code using A ‘ Code using B

Network Operating System
(1)

Machine A Machine B Machine C

Distributed applications

Network OS Network OS Network OS
services services services
Kernel Kernel Kernel

Network

General structure of a network operating system.

Network Operating System

(2)

Two clients and a server in a network operating

svstem.

Client 1

Client 2

Request

Reply

File server

Disks on which
= shared file system

@ s stored

| [«]

Network

Network Operating System
(3)

Different clients may mount the servers in different
places.

Client 1 Client 2 Server 1 Server 2
{ / games work
private pacman mail

pacwoman teaching

pacchild research

(a)

Client 2

private/games

workof—\

pacwoman

(b) (c)

Positioning Middleware

General structure of a distributed system as
middleware.

Machine A Machine B Machine C

Distributed applications

Middleware services

Network OS Network OS Network OS
services services services
Kernel Kernel Kernel

MNetwork

Middleware and Openness

Application Same Application
programming

- Interface

A A

— —

i N

Middleware [» Middleware
Common

Network OS prgtﬂcgl Network OS

In an open middleware-based distributed system, the
protocols used by each middleware layer should be the
same, as well as the interfaces they offer to applications.

Comparison between

IteSmyStemSDistributed OS5 Network Middleware-
Multiproc. | Multicomp. 05 based OS

Degree of transparency Very High High Low High
Same OS on all nodes Yes Yes No No
Number of copies of OS 1 N N N
Basis for communication rﬁgﬂg?y Messages Files Model specific
Resource management S;?}??;i disilﬁsj'l;e q Per node Per node
Scalability No Moderately Yes Varies
Openness Closed Closed Open Open

A comparison between multiprocessor operating systems,
multicomputer operating systems, network —operating
systems, and middleware based distributed systems.

Clients and Servers

General interaction between a client and a server.

Wait for result
Client

Request

Provide service Time —™

An Example Client and Server

(1)

/* Definitions needed by clients and servers. */

#define TRUE 1

#define MAX_PATH 255 /* maximum length of file name */
#define BUF_SIZE 1024 /* how much data to transfer at once */
#define FILE_SERVER 243 /* file server's network address)
/* Definitions of the allowed operations */

#define CREATE -1 /* create a new file */
#define READ 2 /* read data from a file and return it */
#define WRITE 3 /* write data to a file */
#define DELETE 4 /* delete an existing file */
/* Error codes. */

#define OK 0 /* operation performed correctly */
#define E_BAD_OPCODE -1 /* unknown operation requested */
#define E_BAD_PARAM -2 /* error in a parameter i)
#define E_IO -3 /* disk error or other /O error */

/* Definition of the message format. */
struct message {

long source; /* sender’s identity */
long dest; /* receiver’s identity */
long opcode; /* requested operation */
long count; /* number of bytes to transfer */
long offset; /* position in file to start /O */
long result; /* result of the operation */
char name[MAX_PATH]; /* name of file being operated on */
char data[BUF _SIZE]; /* data to be read-or written */

The header.h file used by the client and server.

An Example Client and Server

(2)

#include <header.h>
void main(void) {

struct message mi, m2; /* incoming and outgoing messages
intr; /* result code
while(TRUE) { /* server runs forever
receive(FILE_SERVER, &mi); /* block waiting for a message
switch(ml.opcode) { /* dispatch on type of request
case CREATE: r=do_create(&ml, &m2); break;
case READ: r = do_read(&ml, &m2); break;

case WRITE: r = do_write(&ml, &m2); break;
case DELETE: r = do_delete(&ml, &m2); break;

default: r= E_BAD_OPCODE;
}
m2.result =r; /* return result to client
send(ml.source, &m2); /* send reply

}

A sample server.

*/
*/
v

K j
*/

*/
i

An Example Client and Server

(3)

#include <header.h> a4
int copy(ciiar *src, char *dst){ /* procedure to copy file using the server */

struct message ml; _ /" message buffer */

long position; /* current file position */

long client = 110; /* client's address *

initialize(); /* prepare for execution */

position = 0;

do{
ml.opcode = READ; /* operation is a read */
ml.offset = position,; /* current position in the file */
ml.count = BUF_SIZE; /* how many bytes to read"/
strcpy(&mi.name, src); /* copy name-of file to be read to message */
send(FILESERVER, &ml); /* send the message to the file server */
receive(client, &ml); /* block waiting for the reply */
/* Write the data just received to the destination file. */
mi.opcode = WRITE; /* operation is a write */
ml.offset = position; /* current position in the file */
mi.count = ml.result; /* how many bytes to write */
strcpy(&ml.name, dst); /* copy name of file to be written to buf */
send(FILE_SERVER, &ml); /* send the message to the file server "/
receive(client, &ml); /* block waiting for the reply */
position += ml.result; /* ml.result is number of bytes written "/

} while(ml.result > 0); /* iterate until done ™/

return(ml.result >= 0 2 OK : ml result); /* return OK or error code */

A client using the server to copy a file.

Processing Level

1 User-interface
level

‘ User interface

HTML page
Keyword expression containing list
HTML
generator Processing

Query Ranked list level
of page titles
Ranking
component

Database queries

generator

Database
with Web pages

Web page titles

with meta-information
Data level

The general organization of an Internet search
engine into three different layers

Multitiered Architectures (1)

Alternative client-server organizations (a) — (e).

Client machine

‘ User interface ‘ User interface User interface User interface User interface
LT Application Application Application
_____3““‘——— o _$_) K,,»’é, Database
User interface P _¢$
Application Application ’H_Application L o
Database Database ‘ Database ‘ Database ‘ Database
Server machine
(@) (b) (c) () (e)

Multitiered Architectures (2)

An example of a server acting as a client.

User interface Wait for result
(presentation) LTI

Request
operation

Return

result
Wait for data

Application
server

Return data

Database
server

Modern Architectures

An example of horizontal distribution of a Web

Replicated Web servers each
containing the same Web pages

service.

Front end

handling

incoming

requests
Requests
handled in _yt
round-robin “~_]
fashion

=

—

=

=

—

=

=

—

L — Disks

=

g_/!t/ei‘w#\—_/

Application

» SImplify the complex application
e Transparency In System

Scope of Research

» On ATM Support for Distributed Real-
Time Applications

e An ATM distributed simulator for
network management research

