Lecture 2

POWER SYSTEMS

Per-Unit Quantities

Per unit quantities are quantities that have been normalized to a base quantity. In general,

$$Z_{pu} = \frac{Z_{actual}}{Z_{base}}$$
 per-unit (p.u)

Choice of the base value Z_{base} is normally a rated value which is often one of the normal full-load operations of power component in a power network.

Let us look at two of the most common per unit formula which are widely used when per unit calculations are involved.

(i) Base impedance (Z_{base})

For a given single-line (one-line) diagram of a power network, all component parameters are expressed in $3-\phi$ quantity whether it is the rating (capacity) expressed as MVA or voltage as kV. Let begin with $3-\phi$ base quantity of

$$S_{base} = \sqrt{3}V_{base}I_{base}$$
(i)

where Vbase = line voltage, Ibase = line or phase current

Per phase base impedance,

$$Z_{base} = \frac{V_{base}}{I_{base}} \qquad \text{-----(ii) This is line-to-neutral impedance}$$

POWER SYSTEMS

Combining (i) and (ii) yields,

where kV_{base} and MVA_{base} are 3- ϕ qualtities

(ii) Changing base impedance (*Znew*]

Sometimes the parameters for two elements in the same circuit (network) are quoted in per-unit on a different base. The changing base impedance is given as,

$$Z_{NEW}(pu) = Z_{OLD} \times \frac{\left[kV_{base \ OLD}\right]^{2}}{\left[kV_{base \ NEW}\right]^{2}} \times \frac{MVA_{base \ NEW}}{MVA_{base \ OLD}}$$