## Lecture 2

## Per-Unit Quantities

Per unit quantities are quantities that have been normalized to a base quantity. In general,

$$
Z_{p u}=\frac{Z_{\text {actual }}}{Z_{\text {base }}} \quad \text { per-unit (p.u) }
$$

Choice of the base value $Z_{\text {base }}$ is normally a rated value which is often one of the normal full-load operations of power component in a power network.
Let us look at two of the most common per unit formula which are widely used when per unit calculations are involved.
(i) Base impedance $\left(Z_{\text {base }}\right)$

For a given single-line (one-line) diagram of a power network, all component parameters are expressed in 3- $\phi$ quantity whether it is the rating (capacity) expressed as MVA or voltage as kV. Let begin with 3- $\phi$ base quantity of

$$
\begin{equation*}
S_{b a s e}=\sqrt{3} V_{b a s e} I_{\text {base }} \tag{i}
\end{equation*}
$$

where Vbase = line voltage, Ibase= line or phase current
Per phase base impedance,

$$
Z_{\text {base }}=\frac{V_{\text {base }} / \sqrt{3}}{I_{\text {base }}}
$$

-----(ii) This is line-to-neutral impedance

Combining (i) and (ii) yields,

$$
Z_{\text {base }}=\frac{V_{\text {base }} / \sqrt{3}}{S_{\text {base }} / \sqrt{2} V} \quad Z_{\text {base }}=\frac{\left[k V_{\text {base }}\right]^{2}}{M V A_{\text {base }}}
$$

where $k V_{\text {base }}$ and $M V A_{\text {base }}$ are $3-\phi$ qualtities
(ii) Changing base impedance (Znew]

Sometimes the parameters for two elements in the same circuit (network) are quoted in per-unit on a different base. The changing base impedance is given as,

$$
Z_{\text {NEW }}(p u)=Z_{\text {OLD }} \times \frac{\left[k V_{\text {base OLD }}\right]^{2}}{\left[k V_{\text {base } N E W}\right]^{2}} \times \frac{M V A_{\text {base }} \text { NEW }}{M V A_{\text {base OLD }}}
$$

