Introduction

Power semiconductor devices used in CSI inverters must be able to withstand large reverse voltages. Therefore, power MOSFETs, BJTs, IGBTs, MCTs, IGCTs and GTOs.

Symmetric blocking GTOs and thyristors can be used in CSI inverters.

Generally CSI inverters are now used in very high power applications.

Six-Step CSI with Self-Commutated Devices

Self-controlled symmetric blocking devices, e.g. GTO's can be turned on and off by gate current pulses. This allows the 6-step waveform to be directly controlled.

Figure 6.18 Six-step GTO current-fed inverter with induction motor load

- In this circuit, the capacitors are freed from their commutating requirement and are simply placed across the terminals of the induction motor. These capacitors are much smaller and serve two roles:
- 1) primarily, to allow commutation from the outgoing GTO to the incoming GTO,
- 2) secondarily, to load filter higher harmonics

<u>Example</u>: Commutation from Q_1 to Q_3 .

Figure 6.19 Equivalent circuit during commutation from Q_1 to Q_3

- Initially current flows through Q₁, phase a, phase c, and Q₂. The equivalent capacitance C_{eq} and polarity of v_{ba} are as shown.
- Next, Q_3 is turned on at time A. But because of voltage across C_{eq} , Q_1 does not automatically turn off.
- Next, Q_1 is turned off. The current I_d transfers to Q_3 and through C_{eq} .
- C_{eq} charges up overcoming the motor back emf b/w phases a and b. Gradually the current transfers to phase b. Commutation is completed when $i_{h}=I_{d}$.

Total commutation time is t_c.

Once commutation is complete, current can be commutated back to Q_1 . This back and forth current commutation can be used to create a PWM current wave and with suitable selection of notch angles, can be used to suppress higher harmonics (just as in the VSI inverter).

A major disadvantage of this scheme is the potential for resonance between the capacitors and the motor inductance. Care must be taken to avoid impressing current harmonics into the motor/capacitor network which will excite one of the system resonance frequencies. This can be avoided by careful use of PWM. However, since the motor parameters must be known to implement such an approach, this drive is not popular for general-purpose applications.