<u>Thyristor Converters: Inverter Mode (V_d is negative)</u>

Figure 6-15 (a) Inverter, assuming a constant dc current. (b) Waveforms.

- Average value of v_d is negative for 90°< α <180°. Average power P_d is negative ($P_d = V_d I_d$) and thus power flows from the dc to the ac side
- On the ac side, $P_{ac} = V_s I_{sl} \cos \phi_1$ is also negative because $\phi_1 > 90^\circ$
- Inverter mode of operation is possible because there is a source
 of energy on the dc side
 - ac side voltage source providescommutation of current from onepair of thyristors to the others

Figure 6-19 Three-phase thyristor converter with $L_s = 0$ and a constant dc current.

- Current I_d flows through the one thyristor of the top group and one of the bottom group
- If a continuous gate pulse is applied then this circuit will act like a threephase full bridge diode rectifier and, as a result,

$$V_{d0} = 1.35 V_{LL}$$

3-Phase Thyristor Converter Waveforms

Figure 6-20 Waveforms in the converter of Fig. 6-19.

Average Output DC Voltage

$$V_{d\alpha} = V_{d0} - \frac{A_{\mu}}{\pi/3}$$

 $V_{ac} = \sqrt{2} V_{LL} \sin(\omega t)$

The reduction in the average dc voltage due to the delay angle α

$$A_{\mu} = \int_{0}^{\alpha} \sqrt{2} V_{LL} \sin(\omega t) d(\omega t) = \sqrt{2} V_{LL} (1 - \cos \alpha)$$

$$\therefore \quad V_{d\alpha} = V_{d0} - \frac{A\mu}{\pi/3} = 1.35V_{LL} - \frac{\sqrt{2}V_{LL}(1 - \cos\alpha)}{\pi/3}$$
$$= 1.35V_{LL}\cos\alpha = 1.35V_{d0}$$

Average Power $P_{d\alpha} = V_{d\alpha}I_d = 1.35V_{LL}I_d \cos \alpha$ *dc-side voltage waveforms as a function of α

 V_d repeats at six times the line frequency

Figure 6-21 The dc-side voltage waveforms as a function of α where $V_{d\alpha} = A/(\pi/3)$. (From ref. 2 with permission.)

Conclusions

- Thyristor converters provides controlled transfer of power between the line frequency ac and adjustable-magnitude dc
- By controlling α , transition from rectifier to inverter mode of operation can be made and vice versa
- Thyristor converters are mostly used at high-power levels
- Thyristor converters inject large harmonics into the utility system