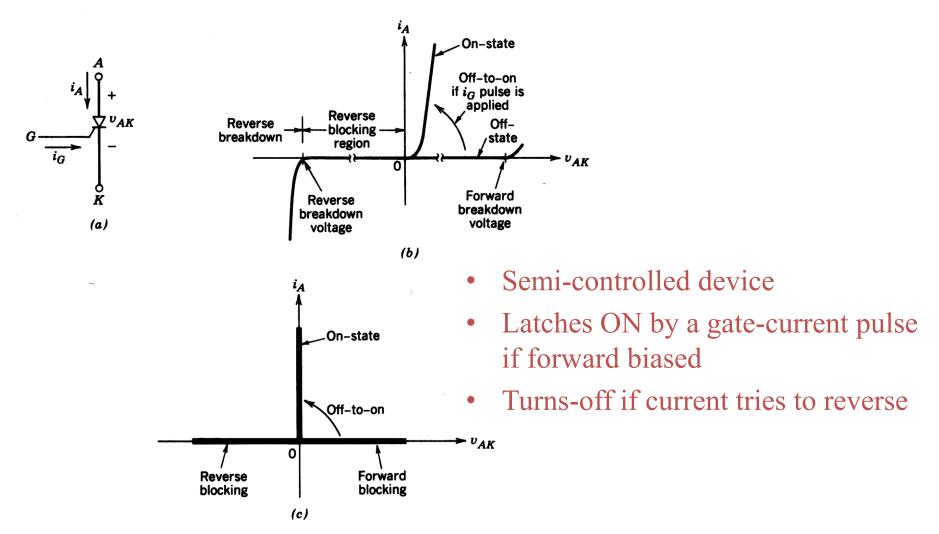
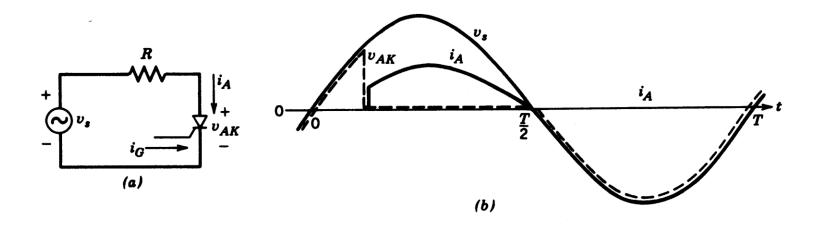
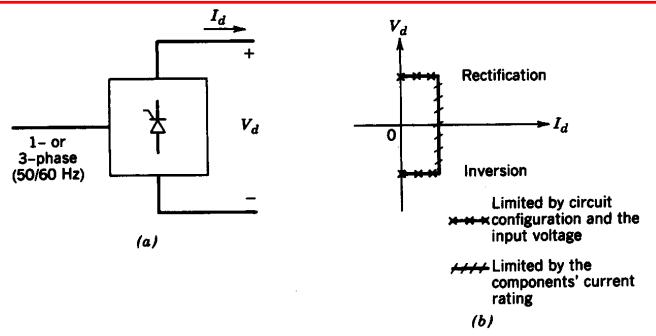
Thyristor Converters Chapter 6

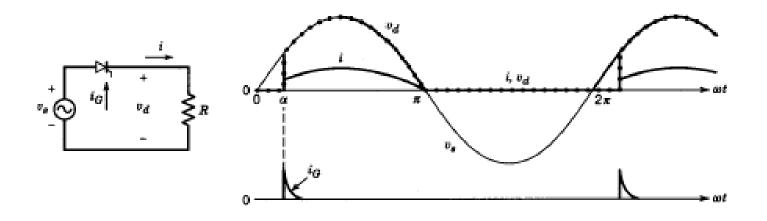
- In some applications (battery charger, some ac/dc drives), the dc voltage has to be controllable
- Thyristor converters provide controlled conversion of ac into dc
- Primarily used in three-phase, high power application
- Being replaced by better controllable switches

Thyristors (Review Class)

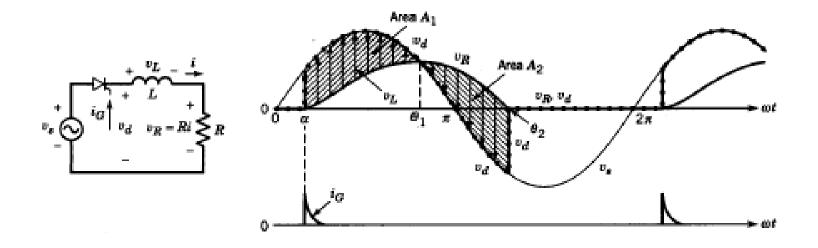



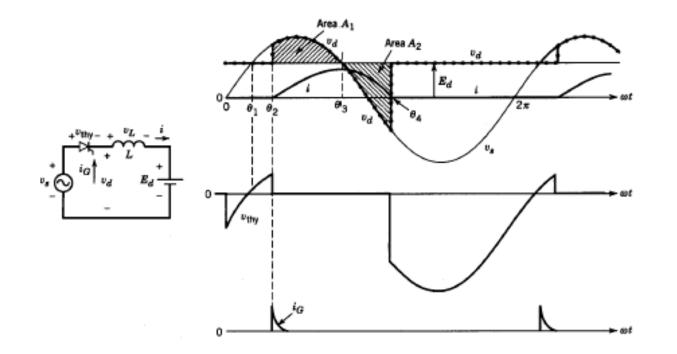

Figure 2-3 Thyristor: (a) symbol, (b) i-v characteristics, (c) idealized characteristics.

Thyristor in a Simple Circuit (Review Class)



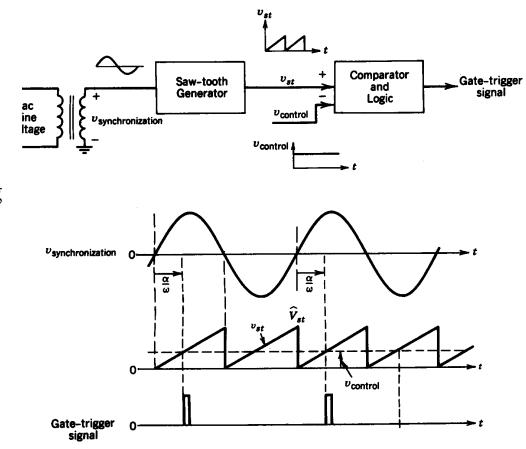
• For successful turn-off, reverse voltage required


Thyristor Converters


- Fully controlled converter shown in Fig. 6-1a
- Average dc voltage V_d can be controlled from a positive maximum to a negative minimum on a continuous basis
- The converter dc current I_d can not change direction
- Two-quadrant operation
- Rectification mode (power flow is from the ac to the dc side): $+V_d \& +I_d$
- Inverter mode (power flow is from the dc to the ac side): : $-V_d \& +I_d$
- Inverter mode of operation on a sustained basis is only possible if a source of power, such as batteries, is present on the dc side.

- Basic thyristor circuits: Line-frequency voltage source connected to a load resistance
- In the positive half cycle of v_s , the current is zero until $\omega t = \alpha$, at which a gate pulse of a short duration is applied
- With the thyristor conducting, $v_d = v_s$
- v_d becomes zero at $\omega t = \pi$
- By adjusting the firing angle α , the average dc voltage V_d and current I_d can be controlled

- o Basic thyristor circuits: Line-frequency voltage source connected to a *RL* load
- o Initially, the current is zero until $\omega t = \alpha$, at which the thyristor is fired during the positive half cycle of v_s
- o With the thyristor conducting, current begins to flow, $v_d = v_s$
- o Voltage across the inductor: $v_L = v_s v_R$
- o During α to θ_1 , v_L is positive, and the current increases
- o Beyond θ_1 , v_L is negative, and the current begins to decline
- o θ_2 is the instant at which current becomes zero and stays at zero until $2\pi + \alpha$ at which the thyristor is fired again



- o Basic thyristor circuits: The load consists of L and a dc voltage E_d
- o The thyristor is reverse biased until θ_1
- o The thyristor conduction is further delayed until θ_2 at which the thyristor is fired
- o With the thyristor conducting, $v_d = v_s$
- o Between θ_2 to θ_3 , v_L is positive, and the current increases
- o Beyond θ_3 , v_L is negative, and the current begins to decline
- o When A_1 is equal to A_2 , current goes to zero at θ_4

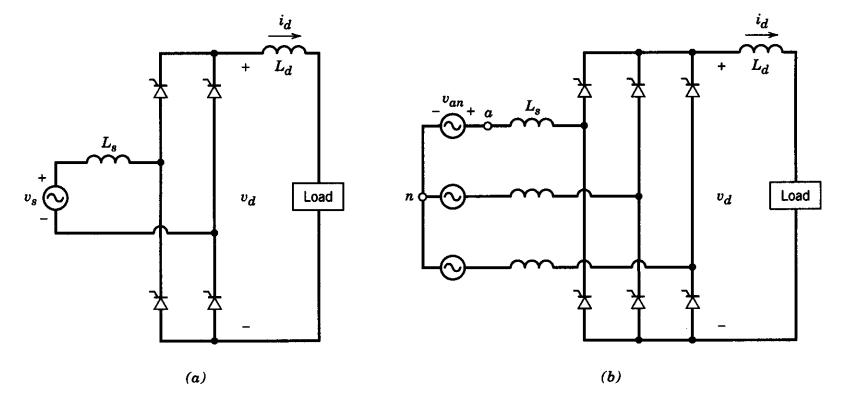
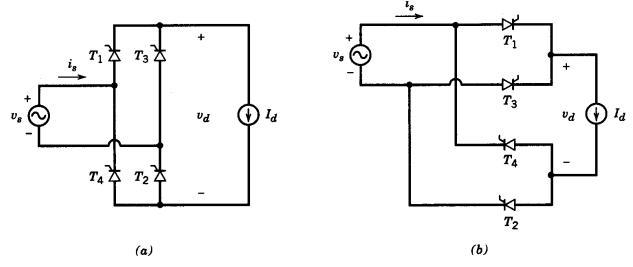
Thyristor Gate Triggering

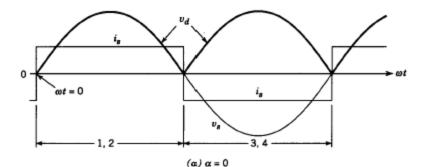
- Generation of the firing signal
- The sawtooth waveform (synchronized to the ac input) is compared with the control signal $v_{control}$, and the delay angle α with respect to the positive zero crossing of the ac line voltage is obtained in terms of $v_{control}$ and the peak of the sawtooth waveform V_{st} .

$$\alpha^{o} = 180^{o} \left(\frac{v_{control}}{V_{st}} \right)$$

gure 6-3 Gate trigger control circuit.

Full-Bridge (Single- and Three-Phase) Thyristor Converters


Figure 6-4 Practical thyristor converters.

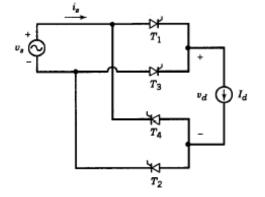

Single-Phase Thyristor Converters

Figure 6-5 Single-phase thyristor converter with $L_s = 0$ and a constant dc current.

- One thyristor of the top group and one of the bottom group will conduct
- If a continuous gate pulse is applied then this circuit will act like a full bridge diode rectifier and the web forms are as shown below
- \square $\alpha=0$ for 1 and 2 and $\alpha=\pi$ for thyristors 3 and 4

- Assumptions: $L_s=0$ and purely dc current I_d
- \Box α : delay angle or firing angle
- Prior to $\omega t=0$, current is flowing through 3 and 4, and $v_d = -v_s$
- Beyond ω*t*=0, thyristors 1 and 2 become forward biased, but cannot conduct until α.
- v_d becomes negative between 0 and α as a consequence of the delay angle
- At $\omega t = \alpha$, gate pulse applied and current commutation from thyristors 3 and 4 to 1 and 2 is instantaneous ($L_s = 0$), and $v_d = v_s$
- Thyristors 1 and 2 will keep conducting until 3 and 4 are fired

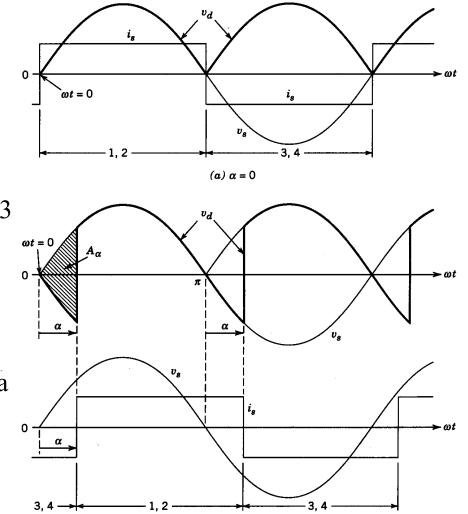


Figure 6-6 Waveforms in the converter of Fig. 6-5.

(b) α = finite

Average dc Voltage as a Function of the Delay Angle

The expression for the average voltage V_d :

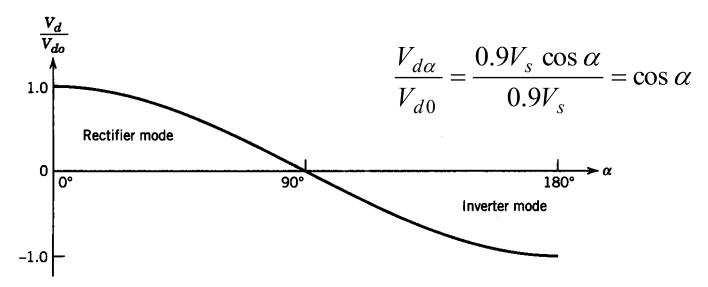
$$V_{d\alpha} = \frac{1}{\pi} \int_{\alpha}^{\alpha+\pi} \sqrt{2} V_s \sin \omega t \, d(\omega t) = 0.9 V_s \cos \alpha$$

Let V_{d0} be the average dc voltage with $\alpha=0$,

$$V_{d0} = \frac{1}{\pi} \int_{0}^{\pi} \sqrt{2} V_{s} \sin \omega t \, d(\omega t) = 0.9 V_{s}$$

Then, drop in average voltage due to α ,

$$\Delta V_{d\alpha} = V_{d0} - V_{d\alpha} = 0.9 V_s (1 - \cos \alpha)$$


The average power through the converter,

$$P = \frac{1}{T} \int_{0}^{T} p(t) dt = \frac{1}{T} \int_{0}^{T} v_{d} i_{d} dt$$

With a constant dc current $(i_d = I_d)$,

$$P = I_d \left[\frac{1}{T} \int_0^T v_d dt \right] = I_d V_d = 0.9 V_s I_d \cos \alpha$$

Average dc Output Voltage

Figure 6-7 Normalized V_d as a function of α .

The variation of V_d as a function of α :

Average dc voltage is positive until α =90°: this region is called the rectifier mode of operation

Average dc voltage becomes negative beyond α =90°: this region is called the inverter mode of operation