Lecture 6

Advantages of the TRIAC:

• The TRIAC has the following advantages:

(i) They can be triggered with positive- or negative-polarity voltage.

(ii) They need a single heat sink of slightly larger size.

(iii) They need a single fuse for protection, which simplifies their construction.

(iv) In some dc applications, the SCR has to be connected with a parallel diode for protection against reverse voltage, whereas a TRIAC may work without a diode, as safe breakdown in either direction is possible.

Disadvantages of the TRIAC:

• *The TRIAC has the following disadvantages:*

(i) TRIACs have low *dv/dt ratings compared to SCRs*.

(ii) Since TRIACs can be triggered in either direction, the trigger circuits with TRIACs needs careful consideration.

(iii) Reliability of TRIACs is less than that of SCRs.

Simple Applications of the TRIAC:

• <u>The TRIAC as a bidirectional thyristor has various</u> <u>applications. Some of the popular applications of the</u> <u>TRIAC are as follows:</u>

(i) In speed control of single-phase ac series or universal motors.

(ii) In food mixers and portable drills.

(iii) In lamp dimming and heating control.

(iv) In zero-voltage switched ac relay.

DIODE AC SWITCH (DIAC):

- The DIAC is a combination of two diodes. Diodes being unidirectional devices, conduct current only in one direction.
- If bidirectional (ac) operation is desired, two Shockley diodes may be joined in parallel facing different directions to form the DIAC.

Figure 8-13 (a) Basic structure of the DIAC (b) Equivalent circuit of the DIAC (c) Symbol of the DIAC

Constructional Features:

• The construction of DIAC looks like a transistor but there are major differences.

<u>They are as follows:</u>

(i) All the three layers, p-n-p or n-p-n, are equally doped in the DIAC, whereas in the BJT there is a gradation of doping. The emitter is highly doped, the collector is lightly doped, and the base is moderately doped.

• (ii) The DIAC is a two-terminal diode as opposed to the BJT, which is a three-terminal device.

Physical Operation and Characteristics:

<u>The main characteristics are of the DIAC are as follows:</u>

- (i) Break over voltage
- (ii) Voltage symmetry
- (iii) Break-back voltage
- (iv) Break over current

.

- (v) Lower power dissipation
- Although most DIACs have symmetric switching voltages, asymmetric DIACs are also available. Typical DIACs have a power dissipations ranging from 1/2 to 1 watt.