LECTURE 5

Determination of the parameters of the equivalent <u>circuit from test data</u>

- The equivalent circuit of a synchronous generator that has been derived contains three quantities that must be determined in order to completely describe the behaviour of a real synchronous generator:
 - The saturation characteristic: relationship between I_f and ϕ (and therefore between I_f and E_f)
 - The synchronous reactance, X_s
 - The armature resistance, R_a
- The above three quantities could be determined by performing the following three tests:
 - Open-circuit test
 - Short-circuit test
 - DC test

Open-circuit test

- The generator is turned at the rated speed
- The terminals are disconnected from all loads, and the field current is set to zero.
- Then the field current is gradually increased in steps, and the terminal voltage is measured at each step along the way.
- It is thus possible to obtain an open-circuit characteristic of a generator $(E_f \text{ or } V_t \text{ versus } I_f)$ from this information

Short-circuit test

- Adjust the field current to zero and short-circuit the terminals of the generator through a set of ammeters.
- Record the armature current I_{sc} as the field current is increased.
- Such a plot is called short-circuit characteristic.

DC Test

- The purpose of the DC test is to determine R_a . A variable DC voltage source is connected between two stator terminals.
- The DC source is adjusted to provide approximately rated stator current, and the resistance between the two stator leads is determined from the voltmeter and ammeter readings

- then
$$R_{DC} = \frac{V_{DC}}{I_{DC}}$$

- If the stator is Y-connected, the per phase stator resistance is

$$R_a = \frac{R_{DC}}{2}$$

- If the stator is delta-connected, the per phase stator resistance is

$$\boldsymbol{R_a} = \frac{3}{2} \, \boldsymbol{R_{DC}}$$

Determination of *X*_s

- For a particular field current I_{fA} , the internal voltage $E_f (=V_A)$ could be found from the occ and the short-circuit current flow $I_{sc,A}$ could be found from the scc.
- Then the synchronous reactance X_s could be obtained using

X_s under saturated condition

Equivalent circuit and phasor diagram under condition

Short-circuit Ratio

Another parameter used to describe synchronous generators is the short-circuit ratio (*SCR*). The SCR of a generator defined as the ratio of the *field current required for the rated voltage at open circuit* to the *field current required for the rated armature current at short circuit*. *SCR* is just the reciprocal of the per unit value of the saturated synchronous reactance calculated by

