LECTURE 3

$$V_1$$
 – stator voltage, per phase $(V_1 = V_{LL}/\sqrt{3})$

 R_1, R_2 – stator and rotor winding resistance

$$X_1 = 2\pi f_1 L_1$$
 – stator leakage reactance

$$X_2 = 2\pi f_1 L_2$$
 – rotor leakage reactance

$$X_m$$
 – magnetizing reactance, per phase

 N_1, N_2 – effective number of turns of stator and rotor windings.

$$E_1 = 4.44 f_1 N_1 \Phi$$
, where Φ is flux per pole
 $E_2 = 4.44 f_1 N_2 \Phi$

• Step2 Rotor winding is shorted

(Under normal operating conditions, the rotor winding is shorted. The slip is *s*)

• Note: the frequency of E_2

is $f_r = sf$ because rotor is rotating.

• Step3 Eliminate f_2

Keep the rotor current same:

$$I_{2SC} = \frac{E_{2SC}}{R_{2SC} + jX_{2SC}} = \frac{sE_2}{R_2 + jsX_2} = \frac{E_2}{\frac{R_2}{s} + jX_2} = I_2$$

• Step 4 Referred to the stator side

- Note:
 - X'₂ and R'₂ will be given or measured. In practice, we do not have to calculate them from above equations.
 - Always refer the rotor side parameters to stator side.
 - $-R_c$ represents core loss, which is the core loss of stator side.

IEEE recommended equivalent circuit

IEEE recommended equivalent circuit

Note: $\frac{R_2}{s}$ can be separated into 2 PARTS $\frac{R_2}{s} = R_2 + \frac{R_2(1-s)}{s}$

Purpose : to obtain the developed mechanical

Power Flow Diagram

Torque-Equation

• Torque, can be derived from power equation in term of mechanical power or electrical power.

Power,
$$P = \omega T$$
, where $\omega = \frac{2\pi n}{60} (rad/s)$

Hence,
$$T = \frac{60P}{2\pi n}$$

Thus,

Mechanical Torque,
$$T_m = \frac{60P_m}{2\pi n_r}$$

Output Torque, $T_o = \frac{60P_o}{2\pi n_r}$

