LECTURE 2

Slip and Rotor Speed

1. Slip *s*

 The rotor speed of an Induction machine is different from the speed of Rotating magnetic field. The % difference of the speed is called slip.

$$s = \frac{n_s - n_r}{n_s} \quad OR \quad n_r = n_s (1 - s)$$

- Where;
- n_s = synchronous speed (rpm)
 n_r = mechanical speed of rotor (rpm)
- under normal operating conditions, s= 0.01 ~ 0.05, which is very small and the actual speed is very close to synchronous speed.
- Note that : s is not negligible

Induction Motor: Rotating Field

- Consider a simple stator with 6 salient poles windings AN, BN, CN.
- The windings are mechanically spaced at 120° from each other.
- The windings are connected to a 3-phase source.
- AC currents Ia, Ib and Ic will flow in the windings, but will be displaced in time by 120°.
- Each winding produces its own MMF, which creates a flux across the hollow interior of the stator.
- The 3 fluxes combine to produce a magnetic field that rotates at the same frequency as the supply

Slip and Rotor Speed

Rotor Speed

- When the rotor move at rotor speed, $n_{r (rps)}$, the stator flux will circulate the rotor conductor at a speed of (n_s-n_r) per second. Hence, the frequency of the rotor is written as:

$$f_r = (n_s - n_r)p$$
$$= sf$$

• Where;

s = slip f = supply frequency

Note: $\underbrace{At \ stator}: \quad n_s = \frac{120f}{p}$ $\therefore f = \frac{n_s p}{120} \quad \dots (i)$ $\underbrace{At \ Rotor}: \quad n_s - n_r = \frac{120f}{p}$ $\therefore f_r = \frac{(n_s - n_r)p}{120} \quad \dots (ii)$ $\underbrace{(ii) \div (i)}: \quad f_r = s.f$

Principle of Operation

Torque producing mechanism

- When a 3 phase stator winding is connected to a 3 phase voltage supply, 3 phase current will flow in the windings, hence the stator is energized.
- A rotating flux Φ is produced in the air gap. The flux Φ induces a voltage E_a in the rotor winding (like a transformer).
- The induced voltage produces rotor current, if rotor circuit is closed.
- The rotor current interacts with the flux Φ, producing torque.
- The rotor rotates in the direction of the rotating flux.

Direction of Rotor Rotates

- Q: How to change the direction of
- rotation?
- • A: Change the phase sequence of the
- power supply.

Equivalent Circuit of Induction Machines

- Conventional equivalent circuit
 - * Note:
 - Never use three-phase equivalent circuit. Always use per-phase equivalent circuit.
 - The equivalent circuit always bases on the Y connection regardless of the actual connection of the motor.
 - Induction machine equivalent circuit is very similar to the single-phase equivalent circuit of transformer. It is composed of stator circuit and rotor circuit

Equivalent Circuit of Induction Machines

• Step1 Rotor winding is open

(The rotor will not rotate)

- Note:
 - the frequency of E_2 is the same as that of E_1 since the rotor is at standstill. At standstill s=1.