

- In RTD, the resistance of a conductor changes when its temperature is changed.
- R=R₀(1+α₁T+ α₂T²+.....α_nTⁿ+....)
 Where R₀=resistance at temperature T=0 and α₁,α₂,...... A_n are constants.
- Platinum is especially suited for this purpose, it can withstand high temperatures while maintaining excellent stability.

- All metals produce a positive change in resistance with temperature.
- The requirements of a conductor material to be used in RTDs are:-
- The change in resistance of material per unit change in temperature should be as large as possible.
- The material should have a high value of resistivity so that minimum volume of material is used for the construction of RTD.

The resistance of materials should have a continuous and stable relationship with temperature.

Characteristics of Resistance Thermometers

Metals used for RTDs

Metal	Resistance temperature Co-efficient /°C	Temperature range °C		Melting
		Min	Max	point C
Platinum Copper Nickel Tungsten	0.39	- 260	110	1773 1083 1435 2270
	0.39 0.62	0 - 220	180 300 1000	

VIRTUAL LAB LINK

http://coep.vlab.co.in/?sub=33&brch=91&sim =448&cnt=1843