Resistive Transducers

- It is used for ac as well as dc current and voltages measurements.
- $R = \rho L/A$

Potentiometers

- POT is a *PASSIVE TRANSDUCER*.
- The *translation and rotational potentiometers* which work on the basis of change in the value of resistance with change in the length of the conductor can be used for measurement of translational or rotary displacements.
- Some POTS use the combination of the 2 motions, i.e. translational as well as rotational. These POTS have their resistive element in the form of a helix and therefore they are called *helipots*

- The Translation elements are straight devices & have a stroke of 2mm to 0.5m.
- The rotational elements are circular in shape and are used for measurement of angular displacement small as 10°(full scale angular displacement)
- *The Helipots* may *measure upto 3500*° *of rotation.*

Resistive Transducers

Characteristics of potentiometer-

Resistive Transducers

• e₀ = (<u>resistance at the output terminals</u>)*input voltage

resistance at the input terminals

•
$$e_{0=}[R_p(x_i/x_t)/R_p]*e_i = (x_i/x_t) e_i$$

Sensitivity S=output/input= $e_0/x_i=e_i/x_t$

Under ideal conditions the sensitivity is constant & the o/p is faithfully reproduced & has a linear relationship with i/p.

Loaded potentiometer

Characteristics of potentiometer

Power rating of potentiometer

- The potentiometer are designed with a definite power rating which is directly related to heat dissipating capacity.
- A single turn potentiometer with diameter of 50mm with a wide range of ohmic values ranging from 100 Ω to 10kΩ.
- They have same heat transfer capabilities.
- Their rating is 5W at an ambient temp.of 21°C.
- Since power P = e_i²/R_p, the max.i/p excitation voltage that can be used is

 $(e_i)max = \sqrt{PR_p}$, volt

Linearity and sensitivity

- In order to achieve good linearity, the resistance of potentiometer R_p should be as low as possible when using a meter for reading the o/p voltage which has a fixed value of i/p resistance R_m. The R_p cannot be made low because if we do so the power dissipation goes up with the result we have to make the i/p voltage small to keep the power dissipation to acceptable level.this results in lower sensitivity.
- In order to achieve high sensitivity the o/p voltage e_o should be high which ion turn requires a high i/p voltage e_i.
- The Linearity and sensitivity are therefore two conflicting requirements.

Materials used for potentiometer

1.Wire Wound Potentiometer:

- These are platinum ,nickel chromium,nickel copper,or some other precious resistance elements.
- It carry relatively large currents at high temperatures.
- Their resistance temperature coefficient is usually small is of the order of 20*10⁻⁶/°C or less.
- Resolution is 0.025 0.05 & is limited by the number of turns that can be accommodated on the card.
- The interwinding capacitance b/w turns & b/w windings & shaft, housing etc. limits the use of wire wound potentiometer to low frequencies to about 5Hz.

Max speed is about 300rpm.

Materials used for potentiometer

2. Non Wire Potentiometer or Continuous Potentiometer:-

- It has improved resolution & life.
- Max speed is 2000rpm.
- They are more sensitive to temperature changes, have a higher wiper contact resistance, which is variable & can carry moderate currents.

Materials used for Non Wire Potentiometer are :-

 Cermet:-It uses precious metal particles fused into ceramic base & these fused particles acts as a resistance elements.

<u>Advatages :</u>

- 1.Large power ratings at high temperatures.
- 2. Low cost.

3. Moderate temperature co-efficients of the order of 100*10⁻⁶/°C Applications:-

Used for a.c. applications.

Materials used for potentiometer

 Hot Moulded Carbon:-The resistance element is fabricated by moulding together a mixture of carbon & a thermosetting plastic binder

<u> Applications:-</u>

Used for a.c. applications.

3. Carbon Film:- A very thin film of carbon deposited on a nonconductive base forms the resistance element.

<u>Advantages :</u>

Low Cost.

- Temperature Co–efficient are upto 100*10⁻⁶/°C
- 4. Thin Metal Film:-A very thin, vapour deposited layer of metal on glass or ceramic is used as resistance element.

<u>Advantages :</u>

1.Its excellent resistance to changes in environments
2.Used for a.c. applications
2.Cost is also mederate

3.Cost is also moderate

Advatages and Disadvantages of resistance potentiometer

<u>Advatages:-</u>

- They are inexpensive.
- They are simple to operate.
- They are very useful for measurement of large amplitudes of displacement.
- Their electrical efficiency is very high & they provide sufficient o/p to permit control operations without further amplification.
- It should be understood that while the frequency response of wire wound potentiometers is limited.
- In wire wound potentiometers the resolution is limited while in cermet & metal film the resolution is infinite.

Disadvantages:-

- Linear potentiometer requires a large force to move their sliding contacts.
- The other problem with sliding contacts are that they can be contaminated ,can wear out,become misaligned & generate noise. so life is limited.