Signals

- Signal
 - Any physical quantity variable in time (or any other independent variable) containing information
 - Continuous
 - Discrete (Amplitude and time)
- Electrical signal (voltage or current loop)
 - Analog continuous
 - Digital quantized

Measurements Fundaments

- Fundamental Units
 - L, T, M, I, Temp, Light
- Derived Units
 - Coulomb, Q =1A*s
 - 1A==Current between 2 conductors apart 1m generating a 2E-7N net force.
 - Elementary charge counting

Units

- Fundamental
- Derived
 - Linear
 - 1V=1W/1A (L²M/T³I)
 - Non-linear
 - $1 dB = 10^{1/10}$

Quantity	Units
L	М
М	Kg
т	S
I.	А
θ	°K
Luminosidade	cd

Some dBs references

Referência	Unidade
1 kW	dBk
1mW (sobre 600R, sin 1kHz)	dBm
1 V	DbV
1 W	dBw
Ganho Tensão	dBvg
10 ⁻¹⁶ Potência acustica	dBrap
1 mW (sobre 600R, voz)	VU

Concepts

- Precision=1- $|(x_i-x_{med})/x_i|$
 - The ability of the instrument to repeat the measurement of a constant value. More precise measurements have less random error.
- Accuracy (Tolerance) The maximum expected difference in magnitude between measured and true values (often expressed as a percentage of the full-scale value); the true value is unknown!
 - Accuracy -> Precision
- Consistency (Histogram)

Concepts

- Sensibility: The relation between the instrument output according to the input changes
- Resolution: Δ Minimum
 - The smallest possible increment discernible between measured values. As the term is used, higher resolution means smaller increments. Thus, an instrument with a five digit display (say, 0.0000 to 9.9999) is said to have higher resolution than an otherwise identical instrument with a three-digit display (say, 0.00 to 9.99). The least identifiable change in the input regarding the instrument output
- Error=|X_{expected} X_{measured}|=d;
 Absolute and relative

 - Random and systematic
- Scale: range and spam

Typical errors

Statistics

- Value distribution:
 - Average deviation (data dispersion):

$$\sigma = \frac{\sum |d_i|}{n}$$

- Standard deviation:
 - n->(n-1) if n<20
- Correlation of data:
 - Linear regression:

$$Y = mX + b$$

$$m = \frac{n \sum (XY) - \sum X \sum Y}{n \sum (X^2) - (\sum X)^2}$$

$$b = \frac{\sum Y(\sum X^2) - \sum X \sum (XY)}{n \sum (X^2) - (\sum X)^2} = \frac{\sum Y - m \sum X}{n}$$

Correlation

Correlation coefficient (Pearson):

• Coefficien^r =
$$\frac{n \Sigma(XY) - \Sigma X \Sigma Y}{\sqrt{(n \Sigma X^2 - (\Sigma X)^2)(n \Sigma(Y^2) - (\Sigma Y)^2)}}$$
 (ce):

Standard deviation – same units as original values

$$v = r^2$$

Signal characteristics

- Preshoot
- Rise-time/Falltime (10%-90%)
 t_r=0.35/BW
- Leading/trailing edge
- Overshoot
- Ringing
- Pulse with
- Pulse amplitude
- Off-set/Baseline
- Duty–cycle

(b) Parameters for periodic pulses.

Signal transmission

Electrical lines (up 1MHz) Distributed parameters □ Atenuation per unit lenght Coaxiais/twisted-pair □ Termination (Wavelenght) Compensation (Z) – Probes **Optical lines** Analog signals – PWM Digital signals Modulated/ON-OFF

B. EQUIVALENT CIRCUIT

Signal transmission

Above 1MHz

- Characteristic impedance
- Propagation delay time
- Standing waves
 - PCI Bus
- Crosstalk

 $Z_0 = \sqrt{\frac{L}{C}}$ $T_D = \sqrt{LC}$