Lecture 8 Power Amplifier (Class A)

- Induction of Power Amplifier
- Power and Efficiency
- Amplifier Classification
- Basic Class A Amplifier
- Transformer Coupled Class A Amplifier

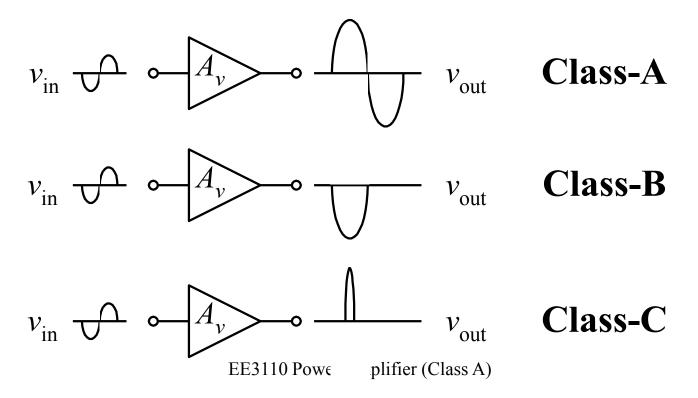
Introduction

- Power amplifiers are used to deliver a relatively high amount of power, usually to a low resistance load.
- Typical load values range from 300W (for transmission antennas) to 8W (for audio speaker).
- Although these load values do not cover every possibility, they do illustrate the fact that power amplifiers **usually drive low-resistance loads**.
- Typical output power rating of a power amplifier will be **1W or higher**.
- **Ideal** power amplifier will deliver **100%** of the power it draws from the supply to load. In **practice**, this can never occur.
- The reason for this is the fact that the components in the amplifier will all **dissipate** some of the power that is being drawn form the supply.

Amplifier Power Dissipation

The **total** amount of power being dissipated by the amplifier, P_{tot} , is $\boldsymbol{P}_{tot} = \boldsymbol{P}_1 + \boldsymbol{P}_2 + \boldsymbol{P}_C + \boldsymbol{P}_T + \boldsymbol{P}_E$ $P_1 = I_1^2 R_1$ The difference between this total value and the total power $P_{\rm T} = I_{\rm TQ}^2 R_{\rm T}$ $P_{\rm E} = I_{\rm EQ}^2 R_{\rm E}$ being drawn from the supply is the power that actually goes to the load – i.e. output power. $P_2 = I_2^2 R_2$ \Rightarrow Amplifier Efficiency η EE3110 Power Amplifier (Class A) 3

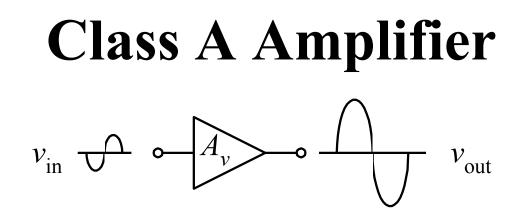
Amplifier Efficiency η


- A figure of merit for the power amplifier is its efficiency, η .
- Efficiency (η) of an amplifier is defined as the ratio of ac output power (power delivered to load) to dc input power.
- By formula :

$$\eta = \frac{ac \text{ output power}}{dc \text{ input power}} \times 100\% = \frac{P_o(ac)}{P_i(dc)} \times 100\%$$

- As we will see, certain amplifier configurations have much higher efficiency ratings than others.
- This is primary consideration when deciding which type of power amplifier to use for a specific application.
- ⇒ Amplifier Classifications

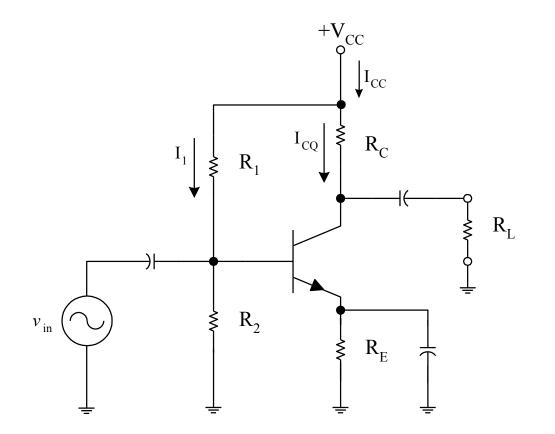
Amplifier Classifications


- Power amplifiers are classified according to the percent of time that collector current is **nonzero**.
- The amount the **output** signal varies over **one cycle** of operation for a **full cycle** of **input** signal.

Efficiency Ratings

• The maximum theoretical efficiency ratings of class-A, B, and C amplifiers are:

Amplifier	Maximum Theoretical Efficiency, η_{max}
Class A	25%
Class B	78.5%
Class C	99%

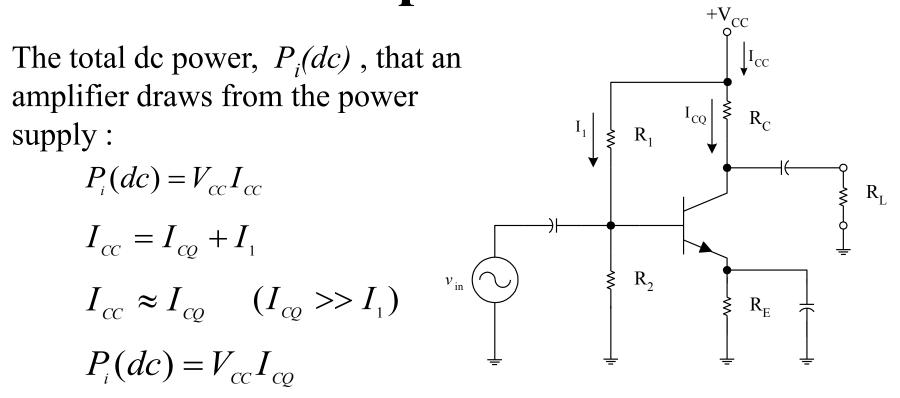


- v_{output} waveform \rightarrow same shape $\rightarrow v_{input}$ waveform $+ \pi$ phase shift.
- The collector current is nonzero 100% of the time.
 → inefficient, since even with zero input signal, Icq is nonzero

(i.e. transistor dissipates power in the rest, or quiescent, condition)

Basic Operation

Common-emitter (voltage-divider) configuration (RC-coupled amplifier)

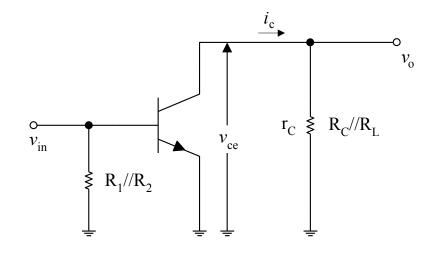

Typical Characteristic Curves for Class-A Operation

Typical Characteristic

- Previous figure shows an example of a sinusoidal input and the resulting collector current at the output.
- The current, I_{CQ}, is usually set to be in the center of the ac load line. Why?
 (DC and AC analyses → discussed in previous sessions)

DC Input Power

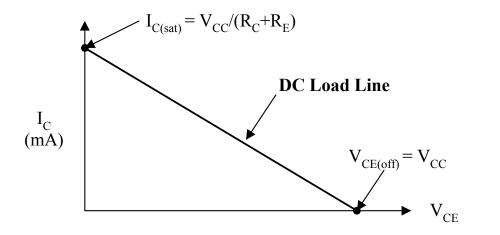
Note that this equation is valid for most amplifier power analyses. We can rewrite for the above equation for the **<u>ideal</u>** amplifier as

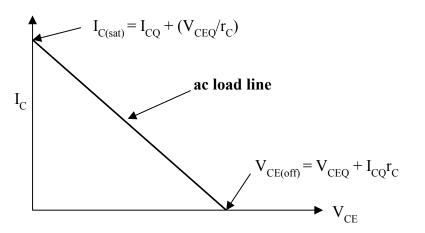

$$P_i(dc) = 2V_{CEQ}I_{CQ}$$

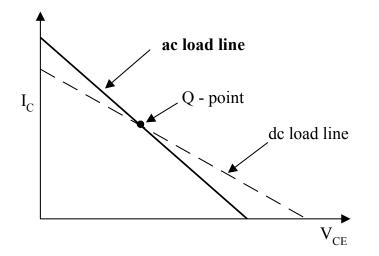
AC Output Power

AC output (or load) power, $P_o(ac)$

$$P_o(ac) = i_{c(rms)}v_{o(rms)} = \frac{v_{o(rms)}^2}{R_L}$$

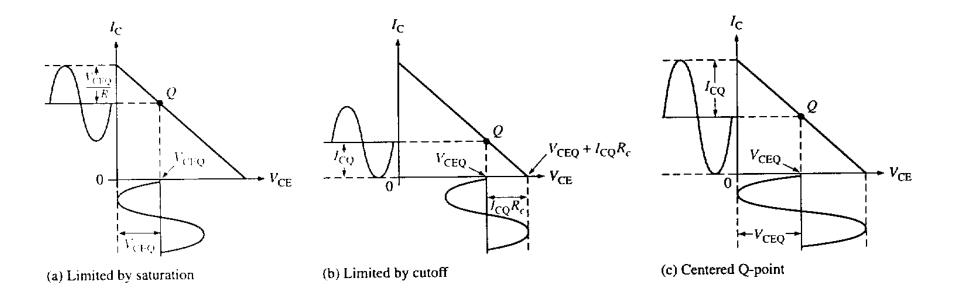

Above equations can be used to calculate the **maximum** possible value of ac load power. HOW??




Disadvantage of using class-A amplifiers is the fact that their efficiency ratings are so low, $\eta_{max} \approx 25\%$.

Why?? A majority of the power that is drawn from the supply by a class-A amplifier is used up by the amplifier itself.

\rightarrow Class-B Amplifier



$$P_o(ac) = \left(\frac{V_{CEQ}}{\sqrt{2}}\right) \left(\frac{I_{CQ}}{\sqrt{2}}\right) = \frac{1}{2} V_{CEQ} I_{CQ} = \frac{V_{PP}^2}{8R_L}$$

$$\eta = \frac{P_{o(ac)}}{P_{i(dc)}} \times 100\% = \frac{\frac{1}{2}V_{CEQ}I_{CQ}}{2V_{CEQ}I_{CQ}} \times 100\% = 25\%$$

Limitation

Example

Calculate the input power $[P_i(dc)]$, output power $[P_o(ac)]$, and efficiency $[\eta]$ of the amplifier circuit for an input voltage that results in a base current of 10mA peak.

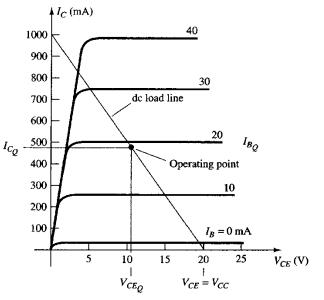
$$I_{BQ} = \frac{V_{CC} - V_{BE}}{R_B} = \frac{20V - 0.7V}{1k\Omega} = 19.3mA$$

$$I_{CQ} = \beta I_B = 25(19.3mA) = 482.5mA \approx 0.48A$$

$$V_{CEQ} = V_{CC} - I_C R_C = 20V - (0.48A)(20\Omega) = 10.4V$$

$$I_{c(sat)} = \frac{V_{CC}}{R_C} = \frac{20V}{20\Omega} = 1000mA = 1A$$

$$V_{CE(cutoff)} = V_{CC} = 20V$$

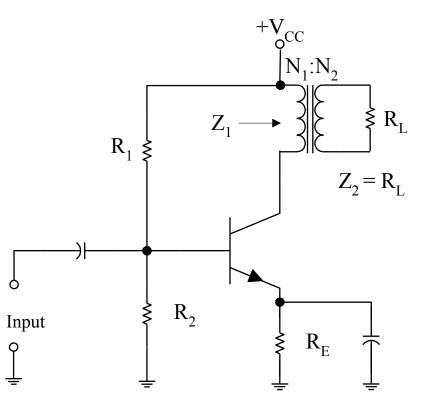

$$I_{C(peak)} = \beta I_{b(peak)} = 25(10mA \ peak) = 250mA \ peak$$

$$P_{o(ac)} = \frac{I_{C(peak)}^2}{2}R_C = \frac{(250 \times 10^{-3} A)^2}{2}(20\Omega) = 0.625W$$

$$P_{i(dc)} = V_{CC}I_{CQ} = (20V)(0.48A) = 9.6W$$

$$\eta = \frac{P_{o(ac)}}{P_{i(dc)}} \times 100\% = 6.5\%$$

 $+V_{CC} = 20V$ $+V_{CC} = 20V$ R_{B} I_{C} 20Ω $\beta = 25$ $\beta = 25$

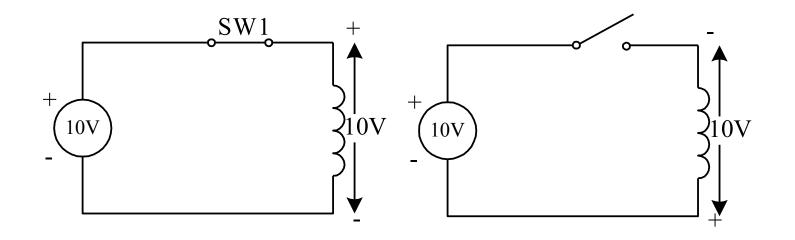

EE3110 Power Amplifier (Class A)

Transformer-Coupled Class-A Amplifier

A transformer-coupled class-A amplifier uses a transformer to couple the output signal from the amplifier to the load.

The relationship between the primary and secondary values of voltage, current and impedance are summarized as:

$$\frac{N_1}{N_2} = \frac{V_1}{V_2} = \frac{I_2}{I_1}$$
$$\left(\frac{N_1}{N_2}\right)^2 = \frac{Z_1}{Z_2} = \frac{Z_1}{R_L}$$



 N_1, N_2 = the number of turns in the primary and secondary V_1, V_2 = the primary and secondary voltages I_1, I_2 = the primary and secondary currents Z_1, Z_2 = the primary and seconadary impedance ($Z_2 = R_L$) EE3110 Power Amplifier (Class A)

Transformer-Coupled Class-A Amplifier

- An **important** characteristic of the transformer is the ability to produce a **counter emf**, or **kick** emf.
- When an inductor experiences a rapid change in supply voltage, it will produce a voltage with a polarity that is opposite to the original voltage polarity.
- The counter emf is caused by the electromagnetic field that surrounds the inductor.

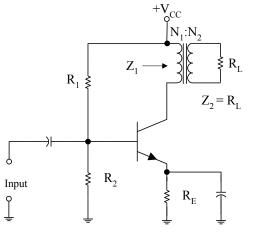
Counter emf

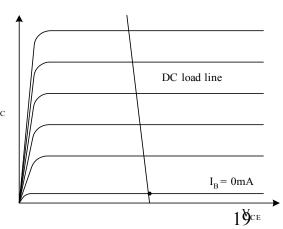
This counter emf will be present only for an instant.

As the field collapses into the inductor the voltage decreases in value until it eventually reaches 0V.

DC Operating Characteristics

The dc biasing of a transformer-coupled class-A amplifier is very similar to any other class-A amplifier with **one important exception** :


 \rightarrow the value of V_{CEQ} is **designed** to be as close as possible to V_{CC}.


The dc load line is very close to being a vertical line indicating that V_{CEQ} will be approximately equal to V_{CC} for all the values of I_{C} .

The nearly **vertical** load line of the transformercoupled amplifier is caused by the **extremely low dc resistance** of the transformer primary.

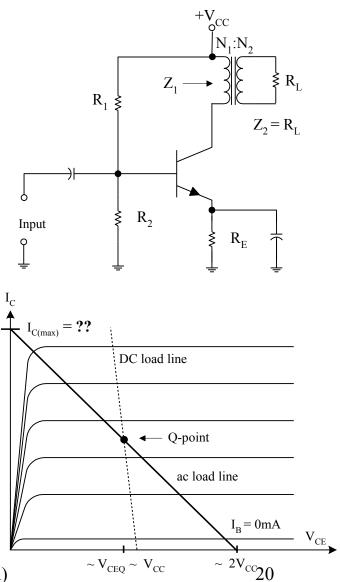
$$V_{CEQ} = V_{CC} - I_{CQ}(R_C + R_E)$$

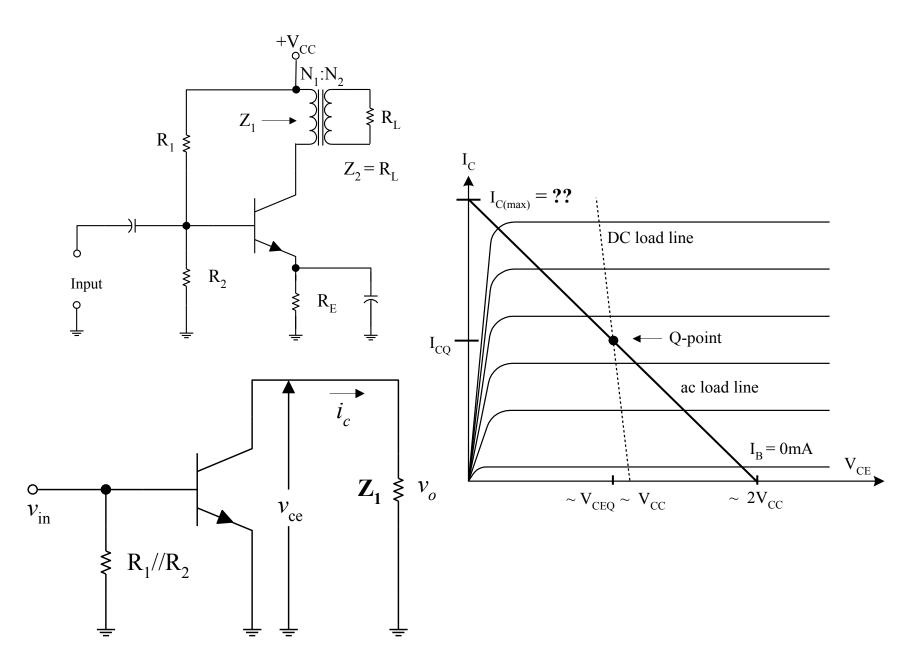
The value of R_L is **ignored** in the dc analysis of the transformer-coupled class-A amplifier. The reason for this is the fact that transformer provides **dc isolation** between the primary and secondary. Since the load resistance is in the secondary of the transformer it **dose not** affect the dc analysis of the primary circuitry. EE3110 Power Amplifier (Class A)

AC Operating Characteristics

1. Determine the maximum possible change in V_{CE}

•Since V_{CE} cannot change by an amount greater than $(V_{CEQ} - 0V)$, $v_{ce} = V_{CEQ}$.


2. Determine the corresponding change in I_C


•Find the value of Z_1 for the transformer: $Z_1 = (N_1/N_2)^2 Z_2$ and $i_c = v_{ce} / Z_1$

3. Plot a line that passes through the *Q*-point and the value of $I_{C(max)}$.

$$\bullet I_{C(max)} = I_{CQ} + i_c$$

4. Locate the two points where the load line passes through the lies representing the minimum and maximum values of I_B . These two points are then used to find the maximum and minimum values of I_C and V_{CE}

EE3110 Power Amplifier (Class A)

Maximum load power and efficiency

The Power Supply for the amplifier : $P_S = V_{CC}I_{CC}$

Maximum peak-to-peak voltage across the primary of the transformer is approximately equal to the difference between the values of $V_{CE(max)}$ and $V_{CE(min)}$: $V_{PP} = V_{CE(max)} - V_{-CE(min)}$ Maximum possible peak-to-peak load voltage is found by $V_{(P-P)max} = (N_2/N_1)V_{PP}$

The **actual efficiency** rating of a transformer-coupled class-A amplifier will generally be **less than 40%**.

There are several reasons for the difference between the practical and theoretical efficiency ratings for the amplifier :

- 1. The derivation of the $\eta = 50\%$ value assumes that $V_{CEQ} = V_{CC}$. In practice, V_{CEQ} will always be some value that is less the V_{CC} .
- 2. The transformer is subject to various power losses. Among these losses are couple loss and hysteresis loss. These transformer power losses are not considered in the derivation of the $\eta = 50\%$ value.

- One of the **primary advantages** of using the transformer-coupled class-A amplifier is the **increased efficiency** over the RC-coupled class-A circuit.
- Another advantage is the fact that the transformer-coupled amplifier is easily converted into a type of amplifier that is used extensively in communications :- the tuned amplifier.
- A tuned amplifier is a circuit that is designed to have a specific value of power gain over a **specific range of frequency**.