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Why Power Amplifiers? 

 Drive a load with high power. 

 

 Cell phone needs 1W of power at the antenna. 

 

 Audio system needs tens to hundreds Watts of power. 

 

 Ordinary Voltage/Current amplifiers are not equipped for 

such applications  
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Chapter Outline 
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Power Amplifier Characteristics 

 Experiences small load resistance. 

 

 Delivers large current levels. 

 

 Requires large voltage swings. 

 

 Draws a large amount of power from supply. 

 

 Dissipates a large amount of power, therefore gets “hot”. 
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Power Amplifier Performance Metrics 

 Linearity 

 

 Power Efficiency 

 

 Voltage Rating 
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Emitter Follower Large-Signal Behavior I  

 As Vin increases Vout also follows and Q1 provides more current. 
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Emitter Follower Large-Signal Behavior II  

 However as Vin decreases, Vout also decreases, shutting off Q1 
and resulting in a constant Vout. 
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Example:  Emitter Follower  
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Linearity of an Emitter Follower 

 As Vin decreases the output waveform will be clipped, 

introducing nonlinearity in I/O characteristics. 
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Push-Pull Stage 

 As Vin increases, Q1 is on and pushes a current into RL.   

 As Vin decreases, Q2 is on and pulls a current out of RL. 
10 CH 13 Output Stages and Power Amplifiers 



I/O Characteristics for Large Vin 

 For positive Vin, Q1 shifts the output down and for negative Vin, 

Q2 shifts the output up. 

Vout=Vin-VBE1  for large +Vin 

Vout=Vin+|VBE2| for large -Vin 
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Overall I/O Characteristics of Push-Pull Stage 

 However, for small Vin, there is a dead zone (both Q1 and Q2 are 

off) in the I/O characteristic, resulting in gross nonlinearity. 
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Small-Signal Gain of Push-Pull Stage 

 The push-pull stage exhibits a gain that tends to unity when 

either Q1 or Q2 is on. 

 When Vin is very small, the gain drops to zero. 

13 CH 13 Output Stages and Power Amplifiers 



Sinusoidal Response of Push-Pull Stage 

 For large Vin, the output follows the input with a fixed DC 
offset, however as Vin becomes small the output drops to zero 
and causes “Crossover Distortion.” 
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Improved Push-Pull Stage 

 With a battery of VB inserted between the bases of Q1 and Q2, 

the dead zone is eliminated. 

VB=VBE1+|VBE2| 
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Implementation of VB 

 Since VB=VBE1+|VBE2|, a natural choice would be two diodes in 

series. 

 I1 in figure (b) is used to bias the diodes and Q1. 
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Example:  Current Flow I  

1 1 2in B BI I I I  

Iin 

If Vout=0 & β1=β2>>1 

=> IB1=IB2 
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Example:  Current Flow II 

 VD1≈VBE → Vout≈Vin 

 If I1=I2 & IB1≈IB2 

→ Iin=0 when Vout=0 
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Addition of CE Stage  

 A CE stage (Q4) is added to provide voltage gain from the input 

to the bases of Q1 and Q2. 
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Bias Point Analysis 

 For bias point analysis, the circuit can be simplified to the one 

on the right, which resembles a current mirror. 

  The relationship of IC1 and IQ3 is shown above.  

VA=0 Vout=0 

IC1=[IS,Q1/IS,D1]×[IC3] 
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Small-Signal Analysis 

 Assuming 2rD is small and (gm1+gm2)RL is much greater than 1, 

the circuit has a voltage gain shown above. 

AV=-gm4(rπ1||r π2)(gm1+gm2)RL 
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Output Resistance Analysis 
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 If β is low, the second term of the output resistance will rise, 

which will be problematic when driving a small resistance. 
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Example:  Biasing  

CE AV=5 

Output Stage AV=0.8 

RL=8Ω 

βnpn= 2βpnp=100 
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Problem of Base Current 

 195 µA of base current in Q1 can only support 19.5 mA of 

collector current, insufficient for high current operation 

(hundreds of mA).  
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Modification of the PNP Emitter Follower 

 Instead of having a single PNP as the emitter-follower, it is now 

combined with an NPN (Q2), providing a lower output 

resistance. 
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Example:  Input Resistance  
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Additional Bias Current 

 I1 is added to the base of Q2 to provide an additional bias 

current to Q3 so the capacitance at the base of Q2 can be 

charged/discharged quickly. 
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Example:  Minimum Vin  

Min Vin≈0 

Vout≈|VEB2| 

Min Vin≈VBE2 

Vout≈|VEB3|+VBE2 
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HiFi Design 

 Using negative feedback, linearity is improved, providing 

higher fidelity.   
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Short-Circuit Protection 

 Qs and r are used to “steal” some base current away from Q1 

when the output is accidentally shorted to ground, preventing 

short-circuit damage. 
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Emitter Follower Power Rating 

1
2

P
av CC

V
P I V

 
  

 

 Maximum power dissipated across Q1 occurs in the absence of 

a signal. 
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Example:  Power Dissipation  
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Push-Pull Stage Power Rating 
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 Maximum power occurs between Vp=0 and 4Vcc/π. 
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Example:  Push-Pull Pav  

4

CCP P
av

L

VV V
P

R 

 
  

 
If Vp = 4VCC/π → Pav=0 

Impossible since Vp cannot go 

above supply (VCC) 
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Heat Sink 

 Heat sink, provides large surface area to dissipate heat from 

the chip. 
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Thermal Runaway Mitigation 
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 Using diode biasing prevents thermal runaway since the 

currents in Q1 and Q2 will track those of D1 and D2 as long as 

theie Is’s track with temperature. 
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Efficiency 
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 Efficiency is defined as the average power delivered to the load 
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Example:  Efficiency  

Emitter Follower 

VP=VCC/2 
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Power Amplifier Classes 

Class A:  High linearity, low efficiency 

Class B:  High efficiency, low linearity 

Class AB:  Compromise between 

                   Class A and B 
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Chapter 14 Analog Filters 

  14.1  General Considerations 

  14.2  First-Order Filters 

  14.3  Second-Order Filters 

  14.4  Active Filters 

  14.5  Approximation of Filter Response 
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Outline of the Chapter 
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Why We Need Filters 

 In order to eliminate the unwanted interference that 

accompanies a signal, a filter is needed.  
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Filter Characteristics 

 Ideally, a filter needs to have a flat pass band and a sharp roll-

off in its transition band. 

 Realistically, it has a rippling pass/stop band and a transition 

band.  
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Example:  Filter I 

Design goal:  Signal to Interference ratio of 15 dB 

Solution:  A filter with stop band of 40 dB 

Given:  Adjacent channel Interference is 25 dB above the signal 

44 CH 14 Analog Filters 



Example:  Filter II 

Given:  Adjacent channel Interference is 40 dB above the signal 

Design goal:  Signal to Interference ratio of 20 dB 

Solution:  A filter with stop band of 60 dB at 60 Hz 
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Example:  Filter III 

 A bandpass filter around 1.5 GHz is needed to reject the 

adjacent Cellular and PCS signals. 
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Classification of Filters I 
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Classification of Filters II 

Continuous-time Discrete-time 
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Classification of Filters III 

Passive Active 
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Summary of Filter Classifications 
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Filter Transfer Function 

 Filter a) has a transfer function with -20dB/dec roll-off 

 Filter b) has a transfer function with -40dB/dec roll-off, better 

selectivity. 

A B 
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General Transfer Function 

Pn =n’th pole 

Zm=m’th zero     
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Pole-Zero Diagram 
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Position of the Poles 

Poles on the RHP 

Unstable  

(no good) 

Poles on the jω axis 

Oscillatory 

(no good) 

 

Poles on the LHP 

Decaying 

(good) 
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Imaginary Zero 

 Imaginary zero is used to create a null at certain frequency. 
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Sensitivity 

P
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 Sensitivity measures the variation of a filter parameter due to 

variation of a filter component. 

P=Parameter 

C=Component 
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Example:  Sensitivity  
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First-Order Filters 
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 First-order filters are represented by the transfer function 

shown above.  

 Low/high pass filters can be realized by changing the relative 

positions of poles and zeros. 
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Example:  First-Order Filter I 

R2C2 <  R1C1 
R2C2 > R1C1 
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Example:  First-Order Filter II 

R2C2 <  R1C1 
R2C2 > R1C1 60 CH 14 Analog Filters 



Second-Order Filters 
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 Second-order filters are characterized by the “biquadratic” 

equation with two complex poles shown above.   
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Second-Order Low-Pass Filter 
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Example:  Second-Order LPF  
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Second-Order High-Pass Filter 
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Second-Order Band-Pass Filter 
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Example:  -3-dB Bandwidth  
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LC Realization of Second-Order Filters 
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 An LC tank realizes a second-order band-pass filter with two 
imaginary poles at  ±j/(L1C1)

1/2 , which implies infinite 
impedance at ω=1/(L1C1)

1/2.  
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Example:  Tank  

 ω=0, the inductor acts as a short. 

 ω=∞, the capacitor acts as a short. 
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RLC Realization of Second-Order Filters 
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 With a resistor, the poles are no longer pure imaginary which 
implies there will be no infinite impedance at any ω. 

69 CH 14 Analog Filters 



Voltage Divider Using General Impedances 
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Low-pass High-pass Band-pass 
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Low-pass Filter Implementation with Voltage Divider 
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Example:  Frequency Peaking  
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Voltage gain larger than unity 
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Low Pass Circuit Comparison 

 The circuit on the left has a sharper roll-off at high frequency 

than the circuit on the right. 

Good Bad 
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High-pass Filter Implementation with Voltage Divider 
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Band-pass Filter Implementation with Voltage Divider 
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Sallen and Key (SK) Filter:  Low-Pass 
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 Sallen and Key filters are examples of active filters.  This 

particular filter implements a low-pass, second-order transfer 

function. 
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Sallen and Key (SK) Filter:  Band-pass 
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Example:  SK Filter Poles  

R1=R2 

C1=C2 
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Sensitivity in Band-Pass SK Filter 
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Example:  SK Filter Sensitivity I 
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Example:  SK Filter Sensitivity II 
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Integrator-Based Biquads 
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 It is possible to use integrators to implement biquadratic 

transfer functions. 

 The block-diagram above illustrates how.   
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KHN Biquads 
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Versatility of KHN Biquads 
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Sensitivity in KHN Biquads 
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Tow-Thomas Biquad 
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Example:  Tow-Thomas Biquad  
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Differential Tow-Thomas Biquads 

 By using differential integrators, the inverting stage is 

eliminated. 
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Simulated Inductor (SI) 

1 3
5

2 4
in

Z Z
Z Z

Z Z


 It is possible to simulate the behavior of an inductor by using 
active circuits in feedback with properly chosen passive 
elements. 
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Example:  Simulated Inductor I 

 By proper choices of Z1-Z4, Zin has become an impedance that 

increases with frequency, simulating inductive effect.  

2
in X YZ R R Cs

90 CH 14 Analog Filters 



Example:  Simulated Inductor II 

1 2 3

4

2

1

Y

in X Y

Z Z Z R

Z
Cs

Z R R Cs

  




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High-Pass Filter with SI  

 With the inductor simulated at the output, the transfer function 

resembles a second-order high-pass filter. 

 
2

1
2

1 1 1 1 1

out

in

V L s
s

V R C L s L s R


 
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Example:  High-Pass Filter with SI  

4 1 Y
out

X

R
V V

R

 
  

 
Node 4 is also an output node 
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Low-Pass Filter with Super Capacitor 

 
1

1
in

X

Z
Cs R Cs




2 2
1 1 1

1

1

out in

in in X

V Z

V Z R R R C s R Cs
 

  

Low-Pass 
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Example:  Poor Low Pass Filter  

 4 2out XV V R Cs 

 Node 4 is no longer a scaled version of the Vout. Therefore the 

output can only be sensed at node 1, suffering from a high 

impedance. 
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Frequency Response Template 

 With all the specifications on pass/stop band ripples and 

transition band slope, one can create a filter template that will 

lend itself to transfer function approximation. 
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Butterworth Response 

2

0

1
( )

1

n
H j







 
  
 

ω-3dB=ω0, for all n 

 The Butterworth response completely avoids ripples in the 

pass/stop bands at the expense of the transition band slope. 
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Poles of the Butterworth Response 

0

2 1
exp exp , 1,2, ,

2 2
k

j k
p j k n

n


 

 
  

 

2nd-Order nth-Order 
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Example:  Butterworth Order  

 The Butterworth order of three is needed to satisfy the filter 

response on the left.  

n=3 

2

2

1

64.2

n
f

f

 
 

 

2 12f f
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Example:  Butterworth Response  

1

2 2
2 *(1.45 )* cos sin

3 3
p MHz j

 


 
  

 

3

2 2
2 *(1.45 )* cos sin

3 3
p MHz j

 


 
  

  2 2 *(1.45 )p MHz

RC section 

2nd-Order SK 
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Chebyshev Response 

 
2 2

0

1

1 n

H j

C








 

  
 

 The Chebyshev response provides an “equiripple” pass/stop 

band response. 

Chebyshev Polynomial 

101 CH 14 Analog Filters 



Chebyshev Polynomial  

Chebyshev Polynomial for  

n=1,2,3 

Resulting Transfer function for 

n=2,3 

1
0

0 0

cos cos ,nC n
 

 
 

   
    

   

1
0

0

cosh cosh ,n


 


 
  

 
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Example:  Chebyshev Attenuation  

 
2

3

2

0 0

1

1 0.329 4 3

H j

 

 



  
   
   

ω0=2π X (2MHz) 

 A third-order Chebyshev response provides an attenuation of -

18.7 dB a 2MHz. 
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Example:  Chebyshev Order  

 Passband Ripple: 1 dB 

 Bandwidth:  5 MHz 

 Attenuation at 10 MHz:  30 dB 

 What’s the order? 

 2 2 1

1
0.0316

1 0.509 cosh cosh 2n 



n>3.66 
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Example:  Chebyshev Response  

   1 1
0 0

2 1 2 11 1 1 1
sin sinh sinh cos cosh sinh

2 2
k

k k
p j

n n n n

 
 

 

     
     

   

K=1,2,3,4 

2,3 0 00.337 0.407p j   

SK2 

1,4 0 00.140 0.983p j   

SK1 
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Chapter 15 Digital CMOS Circuits 

  15.1  General Considerations 

  15.2  CMOS Inverter 

  15.3  CMOS NOR and NAND Gates 
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Chapter Outline 
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Inverter Characteristic 

_

X A

 An inverter outputs a logical “1” when the input is a logical “0” 

and vice versa.  
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NMOS Inverter 

 The CS stage resembles a voltage divider between RD and Ron1 
when M1 is in deep triode region.  It produces VDD when M1 is 
off. 

1

1

( )
on

n ox DD TH

R
W

C V V
L






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Transition Region Gain 

 Ideally, the VTC of an inverter has infinite transition region 

gain.  However, practically the gain is finite. 

Infinite Transition Region Gain Finite Transition Region Gain 
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Example:  Transition Gain  

 Transition Region:  50 

mV 

 Supply voltage:  1.8V 

1.8
36

0.05
vA  V0 – V2:  Transition Region 
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Logical Level Degradation 

 Since real power buses have losses, the power supply levels at 

two different locations will be different.  This will result in 

logical level degradation.  
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Example:  Logic Level Degradation  

5 25 125V A m mV   

Supply A=1.8V 
Supply B=1.675V 
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The Effects of Level Degradation and Finite Gain 

 In conjunction with finite transition gain, logical level 

degradation in succeeding gates will reduce the output swings 

of gates. 
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Small-Signal Gain Variation of NMOS Inverter 

 As it can be seen, the small-signal gain is the largest in the 

transition region. 
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Above Unity Small-Signal Gain 

 The magnitude of the small-signal gain in the transition region 

can be above 1.   

116 CH 15 Digital CMOS Circuits 



Noise Margin 

 Noise margin is the amount of input logic level degradation that 

a gate can handle before the small-signal gain becomes -1.    
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Example:  NMOS Inverter Noise Margin 

  21
2

2
out DD n ox D in TH out out

W
V V C R V V V V

L
     

 

Vin=VIH 1

2
2

in TH
out

n ox D

V V
V

W
C R

L



 

1
L IL TH

n ox D

NM V V
W

C R
L



  1: 
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Example:  Minimum Vout  

 To guarantee an output low level that is below 0.05VDD, RD is 

chosen above. 

 

19
D

n ox DD TH

R
W

C V V
L






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Dynamic Behavior of NMOS Inverter Gates 

 Since digital circuits operate with large signals and experience 

nonlinearity, the concept of transfer function is no longer 

meaningful.  Therefore, we must resort to time-domain analysis 

to evaluate the speed of a gate. 

 It usually takes 3 time constants for the output to transition. 
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Rise/Fall Time and Delay 
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Example:  Time Constant  

 

219
D X

n DD TH

L
R C

V V



 



 Assuming a 5% degradation in output low level, the time 

constant at node X is shown above.  

122 CH 15 Digital CMOS Circuits 



Example:  Interconnect Capacitance  

Wire Capacitance per Mircon:  50x10-18 F/µm 

Total Interconnect Capacitance:  15000X50x10-18 =750 fF 

Equivalent to 640 MOS FETs with W=0.5µm, L=0.18µm, Cox =13.5fF/µm2
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Power-Delay Product 

2
DD XPDP V C

 The power delay product of an NMOS Inverter can be loosely 

thought of as the amount of energy the gate uses in each 

switching event. 
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Example:  Power-Delay Product  

23 DD oxPDP V WLC

  

3

3

PLH D X

DD DD D X

T R C

PDP I V R C




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Drawbacks of the NMOS Inverter 

 Because of constant RD, NMOS inverter consumes static power 
even when there is no switching. 

 RD presents a tradeoff between speed and power dissipation.   
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Improved Inverter Topology 

 A better alternative would probably have been an “intelligent” 

pullup device that turns on when M1 is off and vice versa. 
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Improved Falltime 

 This improved inverter topology decreases falltime since all of 

the current from M1 is available to discharge the capacitor. 
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CMOS Inverter 

 A circuit realization of this improved inverter topology is the 

CMOS inverter shown above.   

 The NMOS/PMOS pair complement each other to produce the 

desired effects. 
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CMOS Inverter Small-Signal Model 

  1 2 1 2||out
m m O O

in

v
g g r r

v
  

 When both M1 and M2 are in saturation, the small-signal gain is 

shown above. 
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Switching Threshold 

 The switching threshold (VinT) or the “trip point” of the inverter 
is when Vout equals Vin.   

 If VinT =Vdd/2, then W2/W1=µn/µp 
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CMOS Inverter VTC 
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Example:  VTC  

 As the PMOS device is made stronger, the VTC is shifted to the 

right.  

W2 

133 CH 15 Digital CMOS Circuits 



Noise Margins 

NML =VIL 

NMH =Vdd-VIH 

 
 

1 2 1 2
2

11 3

dd TH TH dd TH TH
IL

a V V V V aV V
V

aa a

   
 

 

 
 

1 2 1 2
2

11 1 3

dd TH TH dd TH TH
IH

a V V V V aV V
V

aa a

   
 

 

1

2

n

p

W

L
a

W

L





 
 
 


 
 
 

VIL is the low-level input voltage  

at which (δVout/ δVin)=-1 

VIH is the high-level input voltage  

at which (δVout/ δVin)=-1 
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VIL of a Symmetric VTC 

   

 
1 12 2 3 1

1 3

DD TH DD TH
IL

a V V a V a V
V

a a

      
 

Symmetric VTC:  a=1 

1

3 1

8 4
IL DD THV V V 
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Noise Margins of an Ideal Symmetric VTC 

, ,
2

DD
H ideal L ideal

V
NM NM 
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Floating Output  

1

2

/ 2

/ 2

TH DD

TH DD

V V

V V





 When Vin=VDD/2, M2 and M1 will both be off and the output floats.  
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Charging Dynamics of CMOS Inverter 

 As Vout is initially charged high, the charging  is linear since M2 

is in saturation.  However, as M2 enters triode region the charge 

rate becomes sublinear. 
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Charging Current Variation with Time 

 The current of M2 is initially constant as M2 is in saturation.  
However as M2 enters triode, its current decreases. 
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Size Variation Effect to Output Transition 

 As the PMOS size is increased, the output exhibits a faster 

transition.  
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Discharging Dynamics of CMOS Inverter 

 Similar to the charging dynamics, the discharge is linear when 

M1 is in saturation and becomes sublinear as M1 enters triode 

region. 
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Rise/Fall Time Delay 

2 2

2
2

2

2
ln 3 4

THL TH
PLH

DD TH DD
p ox DD TH

VC V
T

W V V V
C V V

L


  
    

         
 

Rise Time Delay 

1 1

1
1

1

2
ln 3 4

THL TH
PHL

DD TH DD
n ox DD TH

VC V
T

W V V V
C V V

L


  
    

         
 

Fall Time Delay 
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Example:  Averaged Rise Time Delay  

 
2

2
2

1

4
AVG p ox DD TH

W
I C V V

L


 
  

 

 

 2

2
2

2
2

/ 2
.

DD DD THL
PLH

DD TH
p ox DD TH

V V VC
T

W V V
C V V

L


 


 
 

 

2 2

4

3
PLH on LT R C
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Low Threshold Improves Speed 

 The sum of the 1st and 2nd terms of the bracket is the smallest 

when VTH is the smallest, hence low VTH improves speed. 

2 /1 2 /1
/

2 /1
/ 2 /1

2 /1

2
ln 3 4

TH THL
PLH HL

DD TH DD
p n ox DD TH

V VC
T

W V V V
C V V

L


  
    

        
 

1st Term 

2nd Term 
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Example:  Increased Fall Time Due to Manufacturing 

Error 

 

'
1 1 1'

1
1 1

1
|| 2on on ON

n ox DD TH

R R R
W W

C V V
L L



 
     
             

Since pull-down resistance is doubled, the fall time is also doubled. 
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Power Dissipation of the CMOS Inverter  

2
_

1

2
Dissipation PMOS L DD inP C V f

2
_

1

2
Dissipation NMOS L DD inP C V f

2
supply L DD inP C V f
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Example:  Energy Calculation  

2

2

2

1

2

1

2

stored L DD

dissipated L DD

drawn L DD

E C V

E C V

E C V






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Power Delay Product 

2 2
1 1

1
1

1

2
ln 3 4

THin L DD TH

DD TH DD
n ox DD TH

Vf C V V
PDP

W V V V
C V V

L


  
    

         
 

Ron1=Ron2 
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Example:  PDP  

2 2

4 1

3

7.25

on

n ox DD

ox in DD

n

R
W

C V
L

WL C f V
PDP






 
 
 


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Crowbar Current 

 When Vin is between VTH1 and VDD-|VTH2|, both M1 and M2 are on 

and there will be a current flowing from supply to ground. 
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NMOS Section of NOR 

 When either A or B is high or if both A and B are high, the 

output will be low. Transistors operate as pull-down devices. 
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Example:  Poor NOR  

 The above circuit fails to act as a NOR because when A is high 

and B is low, both M4 and M1 are on and produces an ill-defined 

low. 
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PMOS Section of NOR 

 When both A and B are low, the output is high.  Transistors 

operate as pull-up devices.  
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CMOS NOR  

 Combing the NMOS and PMOS NOR sections, we have the 

CMOS NOR. 

154 CH 15 Digital CMOS Circuits 



Example:  Three-Input NOR  

 
'

outV A B C  

Equal Rise & Fall (µn≈2µp) 

 

W1=W2=W3=W 

W4=W5=W6=6W 
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Drawback of CMOS NOR 

 Due to low PMOS mobility,  series combination of M3 and M4 

suffers from a high resistance, producing a long delay.  

 The widths of the PMOS transistors can be increased to 

counter the high resistance, however this would load the 

preceding stage and the overall delay of the system may not 

improve. 
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NMOS NAND Section 

 When both A and B are high, the output is low.  
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PMOS NOR Section 

 When either A or B is low or if both A and B are low, the output 

is high. 
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CMOS NAND 

 Just like the CMOS NOR, the CMOS NAND can be implemented 

by combining its respective NMOS and PMOS sections, 

however it has better performance because its PMOS 

transistors are not in series. 
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Example:  Three-Input NAND  

 
'

outV ABC

Equal Rise & Fall (µn≈2µp) 

  

W1=W2=W3=3W 

W4=W5=W6=2W 
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NMOS and PMOS Duality 

 In the CMOS philosophy, the PMOS section can be obtained 

from the NMOS section by converting series combinations to 

the parallel combinations and vice versa.   

C is in “parallel” with the  

“series” combination of A and B 

C is in “series” with the  

“parallel” combination of A and B 

161 CH 15 Digital CMOS Circuits 


