
•Design of Combinational Elements and

regular array logic

•VHDL Programming

Section D

TOPIC COVERED

 DESIGN OF COMBINATIONAL ELEMENTS &

REGULAR ARRAY LOGIC : NMOS PLA –

 Programmable Logic Devices - Finite State

Machine PLA – Introduction to FPGA.

 VHDL PROGRAMMING: RTL Design –

Combinational logic – Types – Operators –

Packages –

 Sequential circuit – Sub-programs – Test

benches. (Examples: address, counters, flipflops,

FSM,

 Multiplexers / De-multiplexers).

VHDL Introduction

VHDL Introduction

 V- VHSIC

 Very High Speed Integrated Circuit

 H- Hardware

 D- Description

 L- Language

VHDL Benefits

1. Public Standard

2. Technology and Process Independent

 Include technology via libraries

3. Supports a variety of design methodologies

1. Behavioral modeling

2. Dataflow or RTL (Register Transfer Language)

Modeling

3. Structural or gate level modeling

VHDL Benefits (cont)
4. Supports Design Exchange

 VHDL Code can run on a variety of systems

5. Supports Design Reuse
 Code “objects” can be used in multiple designs

6. Supports Design Hierarchy
 Design can be implemented as interconnected

submodules

VHDL Benefits (cont)

7. Supports Synchronous and Asynchronous Designs

8. Supports Design Simulation
 Functional (unit delay)

 Timing (“actual” delay)

9. Supports Design Synthesis
 Hardware implementation of the design obtained directly from

VHDL code.

10. Supports Design Documentation
 Original purpose for VHDL – Department of Defense

VHDL

CODE

a1
1

a2
2

3
a3

4
a4

b1

b2

b3

b4

5

6

7

8

Vcc1

0

GND

0

FPLD
VHDL

Synthsize

Software

VHDL Design Units

 Entity Declaration

 Describes external view of the design (e.g. I/O)

 Architecture Body (AB)

 Describes internal view of the design

 Configuration Declaration

 Package Declaration

 Library Declaration

 Package Body

Architecture Body (AB)

 The architecture body contains the internal
description of the design entity. The VHDL
specification states that a single design entity can
contain multiple architecture bodies. Each AB can
be used to describe the design using a different
level of abstraction.

VHDL Statement Terminator

Each VHDL Statements is terminated using a

semicolon

 ;

VHDL Comment Operator

To include a comment in VHDL, use the comment

operator

 -- This is a comment

 -- This is an example of a comment

 y <= 0; -- can occur at any point

Signal Assignment Operator

To assign a value to a signal data object in VHDL,

we use the

signal assignment operator

 <=
Example:

 y <= ‘1’; -- signal y is assigned the value ONE

Complete AND GATE Example

Library altera;

Use altera.maxplus2.all;

Library ieee;

Use ieee.std_logic_1164.all;

Use ieee.std_logic_arith.all;

Entity and_example is

 port(a,b: in std_logic;

 ya,yb,yc: out std_logic);

End entity and_example;

Architecture test of and_example is

 begin

 --- dataflow model (ya)

 ya <= a and b;

 -- structural model (yb)

 and2:a_7408 port map(a,b,yb);

-- behavioral model (yc)

 process(a,b)

 begin

 yc <= ‘0’;

 if((a=‘1’) and (b = ‘1’)) then

 yc <= ‘1’;

 else yc <= ‘0’;

 end if;

end process;

End architecture test;

AND GATE Example (cont)
When synthesized, we obtain the following logic circuit

Ya

Yb

Yc

A

B

Synthesis tool creates three AND

gates.

Maxplus II Block Diagram

VHDL Example - Hardware

 It is important to remember that VHDL is a

“hardware” language, so you must think and code

in “hardware.”

 Statements within the architecture body run

“concurrently.” That is, order does not matter!!!

 We’ll introduce “sequential” statements later when I

introduce “process blocks”

VHDL Example – Hardware

 Example – Logic Circuit

a

b

c

d

Y1

Y2

Y

-- Code Fragment A

Architecture test of example is

 begin

 y1 <= a and b;

 y2 <= c and d;

 y <= y1 or y2;

 end architecture test;

VHDL Example – Hardware

 Example – Logic Circuit

a

b

c

d

Y1

Y2

Y

-- Code Fragment B

Architecture test of example is

 begin

 y <= y1 or y2;

 y2 <= c and d;

 y1 <= a and b;

end architecture test;

VHDL Example – Hardware

 Example – Logic Circuit

a

b

c

d

Y1

Y2

Y

-- Code Fragment C

Architecture test of example is

 begin

 y2 <= c and d;

 y <= y1 or y2;

 y1 <= a and b;

end architecture test;

All three code fragments produce the same result

VHDL Syntax

VHDL Syntax – Entity Declaration

Describes I/O of the design. I/O Signals

are called ports.
The syntax is:

Entity design_name is

 port(signal1,signal2,…..:mode type;

 signal3,signal4,…..:mode type);

End entity design_name;

VHDL Syntax – Entity Example
Entity my_example is

 port(a,b,c: in std_logic;

 s: in std_logic_vector(1 downto 0);

 e,f: out std_logic;

 y: out std_logic_vector(4 downto 0));

end entity my_example;

Maxplus II Block Diagram

Architecture Body Syntax
 Architecture name of entity_name is

 internal signal and constant declarations

Begin

 Concurrent statement 1;

 Concurrent statement 2;

 Concurrent statement 3;

 Concurrent statement 4;

End architecture name;

VHDL Program Template

Library altera;

Use altera.maxplus2.all;

Library ieee;

Use ieee.std_logic_1164.all;

Use ieee.std_logic_arith.all;

Entity design_name is

 port(signal1,signal2,…..:mode type;

 signal3,signal4,…..:mode type);

End entity design_name;

Architecture name of entity_name is

 internal signal and constant
declarations

Begin

 Concurrent statement 1;

 Concurrent statement 2;

 Concurrent statement 3;

 Concurrent statement 4;

End architecture name;

Simple Concurrent Statements

Assignment Operator

 Assignment operator <=
 Ex: y <= a and b; -- defines a AND gate

 For simulation purposes only, you may specify a delay.

 Ex: y <= a and b after 10 ns;

 This is useful if you want to also use VHDL to generate a known

test waveform or vector. This is known as a “test bench.”

However, we will use Maxplus II to generate test vectors. Note,

you cannot specify a delay for synthesis purposes.

VHDL

Test Bench

VHDL

Design

Output

Vector

Test

 Vector

Simple Concurrent Statements

Logical Operators

 Logical operators
 And, or, nand, nor, xor, xnor, not

 Operates on std_logic or Boolean data objects

 All operators (except for the not operator) require at least two

arguments

Ex: y <= a and b; -- AND gate

Simple Concurrent Statements

Logical Operators

 Logical operators
 Examples y <= a and not b;

 Use parenthesis to define order of execution

 Ex: y<= (a and b) or c; y <= a and (b or c);

Y

a

b

c

Y

c

b

a

Complex Concurrent Statements

with-select-when

with-select-when
Syntax is

 with select_signal select

 signal_name <= value1 when value1_of_select_sig,

 value2 when value2_of_select_sig,

 value3 when value3_of_select_sig,

 value_default when others;

Complex Concurrent Statements

With-select-when

 Example
---- library statements (not shown)

 entity my_test is
 port(a3,a2,a1,a0: in std_logic_vector(3 downto 0);

 s: in std_logic_vector(1 downto 0);

 y: out std_logic_vector(3 downto 0));

 end entity my_test;
 architecture behavior of my_test is

 begin

 with s select

 y <= a3 when “11”,

 a2 when “10”,

 a1 when “01”,

 a0 when others; -- default condition

 end architecture behavior;

Complex Concurrent Statements

With-select-when

 What is the logic expression for y?

 What is this in hardware?

 A 4-bit 4X1 MUX

0 1 0 1 1 0 2 1 0 3 1 0

0,1,2,3

n n n n ny a s s a s s a s s a s s

n

A3

Y

S

Mux

YMUX

A2

A1

A0

A3

S

A2

A0

A1

VHDL Data Objects

 VHDL is an Object Oriented Programming

(OOP) Language. Objects can have values,

attributes and methods. We will primarily use

the following VHDL data objects:

 Signals

 Constants

 Variables

Data Objects

Signals

 Signals

Signals are data objects in which the value of the

object can be changed. There is an implied or

explicit delay between the signal assignment and

when the signal is updated. We will use signals

to represent nets (i.e. wires) in our circuits.

They can be implemented in hardware.

Signals are defined in port statements and

architecture declaration blocks.

Data Objects

Constants

 Constants

 Constants are data objects in which the value of

the object cannot be changed. They are defined

within an architecture or process declaration

block. They cannot be implemented in hardware.

Data Objects

Constants

Syntax:

constant name: type := value;

Example:

 constant s0: std_logic_vector(1 downto 0):= “01”;

Notes:

1. Use a set of single apostrophes to enclose a single bit
(e.g. ‘1’).

2. Use a set of quotations to enclose multiple bits (e.g. “01”).

Data Objects

Variables

 Variables

 Variables are data objects in which the value of

the object can be changed. This change occurs

instantaneously. Variables can only be defined

within a process declaration block. They cannot

be implemented in hardware.

More about variables later

Sequential Statements

Process Statements

In VHDL, sequential statements are executed

within a process block. Syntax is:

[label:] process (sensitivity list)

 constant or variable declarations

 begin

 sequential statements;

 end process [label];

The sensitivity list contains all of the inputs

to the process block.

Sequential Statements

Process Statements (cont)

A process block is considered a single concurrent

statement. Let’s review our AND example

Sequential Statements

Process Statements - Example

---- library statements

entity and_example is

 port(a,b: in std_logic;

 ya,yb,yc: out std_logic);

End entity and_example;

Architecture test of and_example is

 begin

 --- dataflow model

 ya <= a and b;

 --- structural model

 a_7408 port map(a,b,yb);

-- Process Block

 process(a,b)

 begin

 yc <= ‘0’;

 if ((a=‘1’) and (b = ‘1’)) then yc <= ‘1’;

 else yc <= ‘0’;

 end if;

 end process;

End architecture test;

Sequential Statements

Process Statements

When synthesized, we obtain the following logic circuit

Ya

Yb

Yc

A

B

The process statement

synthesizes into an AND

gate just like the dataflow

and structural statements.

Note, the process block

synthesized AND gate

“runs” concurrently with

the other synthesized AND

gates.

Sequential Statements

Implied Registers

Registers

Sequential Statements

Implied Registers

Q

Q
SET

CLR

D
Q

n+1D

Clock

Reset

Positive edge triggered D-FF with asynchronous reset

Process (d,clock,reset)

 begin

 if (reset = ‘0’) then

 q <= ‘0’;

 elsif(clock’event and clock=‘1’) then

 q <= d;

 end if;

 end process;

A clock’event is a 0 to 1 or 1 to 0 transition on the clock line.

In hardware, this becomes

Sequential Statements

Implied Registers

Q

Q
SET

CLR

D
Q

n+1D

Clock

Reset

How does this produce a register?
1. If reset = 0, q is set to 0 (asynchronous reset)

2. If clock line makes a transition from 0 to 1

• Clock’event and clock = 1

 then q is assigned to d

But, we have not defined an output for

1. Reset = 1,

2. A non Clock’event , or

3. Clock’Event and Clock = 0

So, VHDL assumes we want to retain the current value of q

for these conditions and synthesizes a D-FF for us.

Sequential Statements

Implied Registers

R

E

G

ns ps

reset

We can easily extend this to a register block by using a

std_logic_vector datatype instead of a std_logic datatype.

…….

Signal ns,ps:std_logic_vector(7 downto 0);

……..

Process (ns,clock,reset)

 begin

 if (reset = ‘0’) then

 ps <= “00000000”;

 elsif(clock’event and clock=‘1’) then

 ps <= ns;

 end if;

 end process;

In hardware, this becomes

Sequential Statements

Implied Registers

We can also define a S0 (reset state) and use it to reset the

register. …….

Signal ns,ps:std_logic_vector(7 downto 0);

Constant S0:std_logic_vector(7 downto 0) := “00000000”;

……..

Process (ns,clock,reset)

 begin

 if (reset = ‘0’) then

 ps <= s0; --- use ‘reset’ state

 elsif(clock’event and clock=‘1’) then

 ps <= ns;

 end if;

 end process;

Sequential Statements

Case -When Statement

Use a CASE-WHEN statement when priority is not needed.

All FSMs will be implemented using Case-when statements.

Syntax is:
Case expression is

 when choice_1 =>

 sequential statements;

 when choice_2 =>

 sequential statements;

 ………….

 when choice_n =>

 sequential statements;

 when others => -- default condition

 sequential statements;

 end case;

VHDL FSM Example 1

2-bit Up Counter

State Diagram

S0

s3

S2

S1

Reset

Y=0

Y=1

Y=2

Y=3

VHDL FSM Example 1

 State Table

ps ns y

S0 S1 0

S1 S2 1

S2 S3 2

S3 S0 3

S0 = 00

S1 = 01

S2 = 10

S3 = 11

Let

Let S0 = reset state

Recall Moore FSM

R

E

G

CL

F

CL

H Y

psns
X

clock

reset

Input Vector
Output Vector

Next

State

Present

State

Feedback

Path

Clock

Reset

Use a case statement to implement the design

since priority is not needed

VHDL Code - Header Info

--

--

-- Program: fsm1.vhd

--

-- Description: 2-bit up counter.

--

-- Author: R.J. Perry

-- Date:

-- Revisions:

-- Signal I/O

--

-- Signal name Direction Description

-- clock,reset in clock,reset

-- count out output count

--

VHDL Code - Entity Declaration

-- Call Altera and IEEE packages

library altera;

use altera.maxplus2.all;

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

-- define entity

entity fsm1 is

 port (clk,reset: in std_logic;

 count: out std_logic_vector(1 downto 0)

);

end entity fsm1;

VHDL Code - Architecture Dec

-- define architecture

architecture fsm of fsm1 is

-- define constants

 constant s0: std_logic_vector(1 downto 0) := "00";

 constant s1: std_logic_vector(1 downto 0) := "01";

 constant s2: std_logic_vector(1 downto 0) := "10";

 constant s3: std_logic_vector(1 downto 0) := "11";

 signal ns,ps: std_logic_vector(1 downto 0);

begin

VHDL Code -- F Logic

--

-- this process executes the F logic

--

 process (ps)

 begin

 ns <= s0; -- This is the default output

 case ps is

 when s0 => ns <= s1;

 when s1 => ns <= s2;

 when s2 => ns <= s3;

 when s3 => ns <= s0;

 when others => ns <= s0; -- default condition

 end case;

 end process;

S0

s3

S2

S1

State Diagram for F Logic

Note: we only need to “describe” the behavior

VHDL will “figure out” the functional relationships

Input into F logic

VHDL Code -- Register Logic

--

-- This process includes the registers
implicitly

--

 reg: process (clk, reset, ns)

 begin

 if(reset = '0') then

 ps <= s0;

 elsif (clk'event and clk = '1') then

 ps <= ns;

 end if;

 end process reg;

R

E

G

ns ps

Reset

clk

Inputs to reg logic

VHDL Code -- H Logic

--

-- Use concurrent statement to implement H Logic

--

 count <= ps;

 end architecture fsm;

ps count

Recall – Gate Level Logic

Diagram

Maxplus II “Produces”

Is this correct?

0 0

1 1 0 0 1 1 0

s s

s s s s s s s

n p

n p p p p p p

We have,

OK, same as before

OK, same as

before
How does this code

fit into our Moore FSM architecture?

T = Toggle FF

T input

