Power System-II

Lecture-1

Power System Transients on a transmission line, short circuit of synchronous machine at no load and on full load.

Topic Covered

- Introduction of Power System
- Complications
, Electrical Transient
- RC Circuit Response

Simple Power System

- Every power system has three major components:
- generation: source of power, ideally with a specified voltage and frequency
- load or demand: consumes power; ideally with a constant resistive value
- transmission system: transmits power; ideally as a perfect conductor
- Additional components include:
- distribution system: local reticulation of power, - control equipment: coordinate supply with load.

Complications

- No ideal voltage sources exist.
- Loads are seldom constant and are typically not entirely resistive.
- Transmission system has resistance, inductance, capacitance and flow limitations.
- Simple system has no redundancy so power system will not work if any component fails.

Power

- Power:
- Instantaneous rate of consumption of energy,
- How hard you work!
- Power = voltage \times current for dc
- Power Units:

Watts $=$ amps times volts (W)
kW - 1×10^{3} Watt
MW - 1×10^{6} Watt
GW - $\quad 1 \times 10^{9}$ Watt

Energy

- Energy:
- Integration of power over time,
- Energy is what people really want from a power system,
- How much work you accomplish over time.
- Energy Units:

Joule $=1$ watt-second (J)
kWh - kilowatthour (3.6×106 J)
Btu - 1055 J;
$1 \mathrm{MBtu}=0.292 \mathrm{MWh}$

Electrical Transients

- Time Scale in Power System Studies: planning, Load Flow, Dynamic Stability Switching, external disturbances
- Frequency Content
- Differential Equations Solution
- Distributed and Lumped Parameters

CCT Parameters

- In Steady State and Transient
- Mathematical

Presentation \&
Physical
Interpretation

Simple RC Circuit, Closing Ideal

 Sw.$$
\mathrm{s}
$$

Equations of RC Circuit

$$
\begin{aligned}
& V=I R+\frac{1}{C} \int I d t \quad I=\frac{d Q}{d t}=C \frac{d V_{1}}{d t} \\
& V=R C \frac{d V_{1}}{d t}+V_{1} \\
& \frac{d V_{1}}{V-V_{1}}=\frac{d t}{R C}
\end{aligned}
$$

RC Circuit Response

$$
\ln \left(V-V_{1}\right)=-\frac{t}{R C}+\text { Cons }
$$

$$
V_{1}=V-\left[V-V_{1}(0)\right] e^{-t / R C}
$$

$$
V_{1}=V-A e^{-t / R C}
$$

RC Circuit Response

$$
\ln \left(V-V_{1}\right)=-\frac{t}{R C}+\text { Cons }
$$

$$
V_{1}=V-\left[V-V_{1}(0)\right] e^{-t / R C}
$$

$$
V_{1}=V-A e^{-t / R C}
$$

RC Circuit Discharge

$$
R C \frac{d V_{1}}{d t}+V_{1}=0
$$

$$
V_{1}=V_{1}(0) e^{-t / R C}
$$

Capacitor Voltage of RC CCT

