Lecture-5

Single line to ground fault, line to line fault, double line to ground fault, open conductor fault.

Topic Covered

- Sequence Components in Fault
- Interconnection Of Sequence Network
- L-L faults

Sequence Components in Fault Analysis Program

> Step 1–

Three Phase Model .

Formulate Admittance Matrix.

$$[Iabc]_{3n \times 1} = [Yabc]_{3n \times 3n} \times [Vabc]_{3n \times 1}$$

> Step 2-

Sequence Model Formulation.

$$[\mathbf{I}_{012}]_{\mathbf{n}\times\mathbf{1}} = [\mathbf{Y}_{012}]_{\mathbf{n}\times\mathbf{n}} \times [V_{012}]_{\mathbf{n}\times\mathbf{1}}$$

Step 3- $[e_l] = [0 \ 0 \ 0 \ 0 \ 1 \ . \ 0 \ 0]'$ Inject 1.0 p.u. current at bus / i.e. Let, Compute V₁ of desired sequence i.e. solve

> $Z_{th}^{0,1,2}$ at /bus= V_{l}^{012} [Y012][V_{012}] $n \times 1 =$ [e_{l012}]

Input to Fault Analysis program

Depends on type of fault

Three phase fault. \succ

 \Rightarrow Only Positive Sequence Data. Negative, Zero sequence Network not excited.

SLG fault \geq

 \Rightarrow Positive, Negative, Zero sequence Data.

Typical fault study \geq

⇔SLG

(√)

Fault current can range in utility systems from a few percent to possibly 125% of the three phase fault value.

 \Rightarrow Three phase($\sqrt{}$)

In industrial systems line to ground fault current of more than three phase value is rare.

⇒LL $(X)_{3}$ fault currents are approximately 87% of threephase fault current (X)

⇒LLG

Interconnection Of Sequence Network.

Three Phase Fault.

Line To Line Fault.

Fault Current Formulae

Three Phase Fault :- For a Three Phase fault only Positive Sequence Network is considered. The fault currents are given by the following equations.

•
$$I_1 = \frac{V}{Z_1}$$
 (solid Fault)
• $I_1 = \frac{V}{Z_1 + Z_f}$ (Fault Through impendence Z_f)

Single Line To Ground Fault(SLG) :- The Positive Sequence, negetive Sequence and Zero Sequence Fault currents are given by

•
$$I_1 = I_2 = I_0 = \frac{V}{Z_1 + Z_2 + Z_0}$$
 (Solid Fault)
• $I_1 = I_2 = I_0 = \frac{V}{Z_1 + Z_2 + Z_0 + 3Z_f}$ (Fault Through impendence Z_f)
• $I_{aF} = I_1 + I_2 + I_0 = 3I_1 = 3I_2 = 3I_0$

LL fault :- The Zero Sequence Data is not required for this fault.

•
$$I_1 = -I_2 = \frac{V}{Z_1 + Z_2}$$
 (solid Fault)
• $I_1 = -I_2 = \frac{V}{Z_1 + Z_2 + Z_f}$ (Fault Through impendence Z_f)

Line to Line Ground Fault (LLG) :-

1. solid Fault :-

•
$$I_1 = \frac{V}{Z_1 + \frac{z_2 Z_0}{Z_2 + Z_0}}$$

• $I_2 = -I_1 \frac{Z_0}{Z_2 + Z_0}$
• $I_0 = -I_1 \frac{Z_2}{Z_2 + Z_0}$

Line to Line Ground Fault (LLG) :-

1. solid Fault :-

•
$$I_1 = \frac{V}{Z_1 + \frac{z_2 Z_0}{Z_2 + Z_0}}$$

• $I_2 = -I_1 \frac{Z_0}{Z_2 + Z_0}$
• $I_0 = -I_1 \frac{Z_2}{Z_2 + Z_0}$

2. Fault Through impendence Z_F

 Z_f is Fault impedence between the lines, While Z_{FG} is the Fault impendence to Ground.