Lecture-5

Single line to ground fault, line to line fault, double line to ground fault, open conductor fault.

Topic Covered

- Sequence Components in Fault
- Interconnection Of Sequence Network
, L-L faults
- Sequence Components in Fault Analysis Program > Step 1-
Three Phase Model.
Formulate Admittance Matrix.

$$
[\mathbf{I} \mathbf{a b c}]_{3 \mathbf{n} \times \mathbf{1}}=[\mathbf{Y a b c}]_{\mathbf{3 n} \times \mathbf{3 n}} \times[V a b c]_{3 n \times 1}
$$

$>$ Step 2Sequence Model Formulation.

$$
\left[\mathbf{I}_{012}\right]_{\mathbf{n} \times 1}=\left[\mathbf{Y}_{012}\right]_{\mathbf{n} \times \mathbf{n}} \times\left[V_{012}\right]_{n \times 1}
$$

> Step 3Inject 1.0 p.u. current at bus /i.e. Let,

$$
\left[e_{l}\right]=\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & . & 0 & 0
\end{array}\right]^{\prime}
$$

Compute V, of desired sequence i.e. solve

$$
>\mathrm{Z}_{\mathrm{th}}{ }^{0,1,2} \text { at } / \text { bus }=\mathrm{V}_{l}^{012} \quad\left[\mathrm{Y}_{012}\right]\left[V_{012}\right]_{n \times 1}=\left[\mathrm{e}_{l 012}\right]
$$

Input to Fault Analysis program

\checkmark Depends on type of fault

> Three phase fault.
\Rightarrow Only Positive Sequence Data. Negative, Zero sequence Network not excited.
> SLG fault
\Rightarrow Positive, Negative, Zero sequence Data.
> Typical fault study

$$
\Rightarrow S L G \quad(\sqrt{ })
$$

Fault current can range in utility systems from a few percent to possibly 125% of the three phase fault value.
\Rightarrow Three phase ($\sqrt{ }$)
In industrial systems line to ground fault current of more than three phase value is rare.

$$
\begin{array}{ll}
\Rightarrow \mathrm{LL} & \begin{array}{c}
(\mathrm{X})_{\}}^{\text {fault currents are }} \\
\text { approximately } 87 \% \text { of three- } \\
\text { phase fault current }
\end{array} \\
\Rightarrow \mathrm{LLG} & (\mathrm{X}) \tag{X}
\end{array}
$$

- Interconnection Of Sequence

Network.

Three Phase Fault.

Single Line To Ground Fault.

Line To Line Fault.

Fault Current Formulae

Three Phase Fault :- For a Three Phase fault only Positive Sequence Network is considered. The fault currents are given by the following equations.

- $I_{1}=\frac{V}{Z_{1}} \quad$ (solid Fault)
- $I_{1}=\frac{V}{Z_{1}+Z_{f}} \quad$ (Fault Through impendence Z_{f})

Single Line To Ground Fault(SLG) :- The Positive Sequence, negetive Sequence and Zero Sequence Fault currents are given by

- $I_{1}=I_{2}=I_{0}=\frac{V}{Z_{1}+Z_{2}+Z_{0}} \quad$ (Solid Fault)
- $I_{1}=I_{2}=I_{0}=\frac{V}{Z_{1}+Z_{2}+Z_{0}+3 Z_{f}} \quad$ (Fault Through impendence Z_{f})
- $I_{a F}=I_{1}+I_{2}+I_{0}=3 I_{1}=3 I_{2}=3 I_{0}$

LL fault :- The Zero Sequence Data is not required for this fault.

$$
\begin{array}{ll}
\text { - } I_{1}=-I_{2}=\frac{V}{Z_{1}+Z_{2}} & \text { (solid Foult) } \\
\text { - } I_{1}=-I_{2}=\frac{V}{Z_{1}+Z_{2}+Z_{3}} & \text { (Foult Through impendence } \left.Z_{f}\right)
\end{array}
$$

Line to Line Ground Fault (LLG) :-

1. solid Fault:-

- $I_{1}=\frac{V}{Z_{1}+\frac{z_{2} Z_{0}}{Z_{2}+Z_{0}}}$
- $I_{2}=-I_{1} \frac{Z_{0}}{Z_{2}+Z_{0}}$
- $I_{0}=-I_{1} \frac{Z_{3}}{Z_{2}+Z_{0}}$

Line to Line Ground Fault (LLG) :-

1. solid Fault :-

$$
\begin{aligned}
& \text { - } I_{1}=\frac{V}{Z_{1}+\frac{z_{2} Z_{0}}{Z_{2}+Z_{0}}} \\
& \text { - } I_{2}=-I_{1} \frac{Z_{0}}{Z_{2}+Z_{0}} \\
& \text { - } I_{0}=-I_{1} \frac{Z_{2}}{Z_{2}+Z_{0}}
\end{aligned}
$$

2. Fault Through impendence Z_{F}

$$
\begin{aligned}
& \bullet I_{1}=\frac{V}{Z_{1}+\frac{Z_{F}}{2}+\frac{\left(Z_{2}+\frac{Z_{F}}{2}\right)\left(Z_{2}+\frac{Z_{F}}{2}+3 Z_{F G}\right)}{Z_{2}+Z_{0}+Z_{F}+3 Z_{F G}}} \\
& \text { - } I_{2}=-I_{1} \frac{\left(Z_{2}+\frac{Z_{F}}{2}+3 Z_{F G}\right)}{Z_{2}+Z_{0}+Z_{F}+3 Z_{F G}} \\
& \text { - } I_{0}=-I_{1} \frac{\left(Z_{2}+\frac{Z_{F}}{2}\right)}{Z_{2}+Z_{0}+Z_{F}+3 Z_{F G}}
\end{aligned}
$$

Z_{f} is Fault impedence between the lines, While $Z_{F G}$ is the Fault impendence to Ground.

