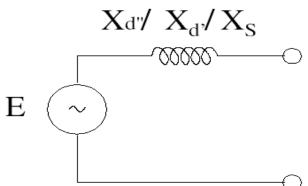
Lecture-4


phase shift in star-delta transformation

Topic Covered

- Sources of Fault Current
- Sequence Components
- Advantages of Sequence Transformation

Sources of Fault Current

- Synchronous Generators
- Synchronous Motors and Condensers
- Induction Machines
- Electrical Utility System
- Distributed Generation (modeling in fault analysis. research problem!)
- Representation of Rotating Machines.

This faunt current unnimisities as the magnetic field in the machine decays.

What does a fault Analysis program do?

- Simulates a fault (steady state analysis)
 - ✓ SLG
 - ✓ LLG
 - ✓ LL
 - ✓ Three phase
- Results
 - ✓ SC MVA

$$SC - MVA(3-phase) = \sqrt{3} |V|_{prefault} In KV \times |I|_{sc} In KA....in MVA.$$

$$SC - MVA(3-phase) = \sqrt{3} |V|_{prefault} \times |I|_{sc} \times (MVA)_{Base....in} p.u.$$
Fault current (in A)

✓ Contribution of various lines to fault current analysis.

What are Sequence Components?

$$\underbrace{\begin{bmatrix} \Delta V_a \\ \Delta V_b \\ \Delta V_c \end{bmatrix}}_{\Delta V^{abc}} = \begin{bmatrix} Z_s & Z_m & Z_m \\ Z_m & Z_s & Z_m \\ Z_m & Z_m & Z_s \end{bmatrix} \underbrace{\begin{bmatrix} I_a \\ I_b \\ I_c \end{bmatrix}}_{I^{abc}}$$

$$\left[\begin{array}{c}I_a\\I_b\\I_c\end{array}\right]=\left[\begin{array}{c}T\end{array}\right]\left[\begin{array}{c}I_a^0\\I_a^1\\I_a^2\end{array}\right]$$

$$\begin{bmatrix} \Delta V_a \\ \Delta V_b \\ \Delta V_c \end{bmatrix} = \begin{bmatrix} T \end{bmatrix} \begin{bmatrix} \Delta V_a^0 \\ \Delta V_a^1 \\ \Delta V_a^2 \end{bmatrix}$$

....continued

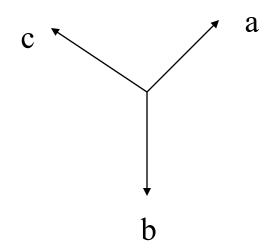
Where,

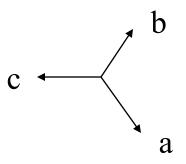
$$\left[\begin{array}{ccc} T \end{array} \right] = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{array} \right] \ And \ a = e^{j\pi/3}$$

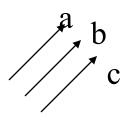
$$\begin{bmatrix} \Delta V_a^0 \\ \Delta V_a^1 \\ \Delta V_a^2 \end{bmatrix} = \begin{bmatrix} Z_s + 2Z_m & 0 & 0 \\ 0 & Z_s - Z_m & 0 \\ 0 & 0 & Z_s - Z_m \end{bmatrix} \begin{bmatrix} I_a^0 \\ I_a^1 \\ I_a^2 \end{bmatrix}$$

 $a \Rightarrow Reference Phase.$

T changes with Reference Phasor.

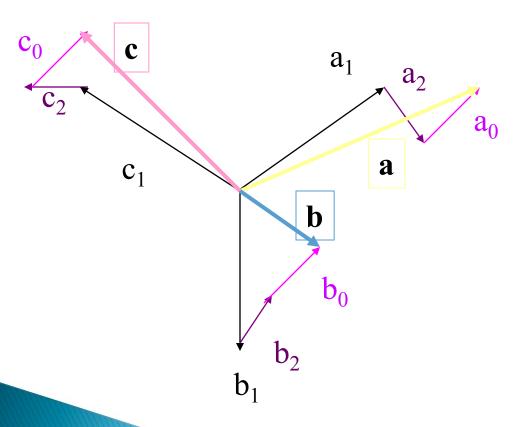

Q.] Write a transformation with b-Phase as Reference Phase.

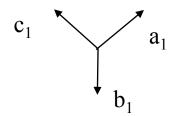

Sequence components


+ve Seq. Component

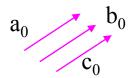
-ve Sequence

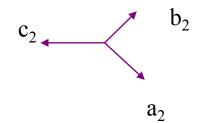
0 Sequence



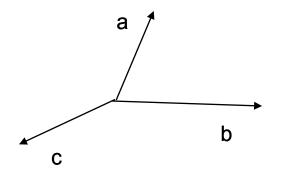

- Unbalanced 3-phase system has six degrees of freedom.
- Every balanced set of phasors has two degrees of freedom (Forteskue, 1918).
- Together +ve,-ve and 0 sequence phasors have six degrees of freedom.
- Hence they can be used to synthesize 3phase unbalanced systems.

Unbalanced System and Sequence Components

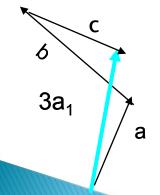

Unbalanced system


Positive Seq.component

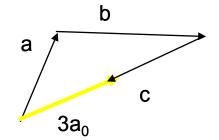
Zero Seq.components

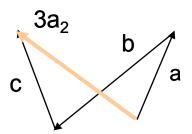


Negative Seq.components



Extracting Sequence Components


Unbalanced System


Positive Seq. Components

Zero Seq. Components

Negative Seq. Components

Advantages of Sequence Transformation

- Used when the network is balanced. Provides decoupling in the network. A 3nX3n Linear System Solver is decoupled into three n X n Linear System Solver.
- Load may be balanced or unbalanced.
- Zero sequence currents provide sensitive earth fault detection technique.