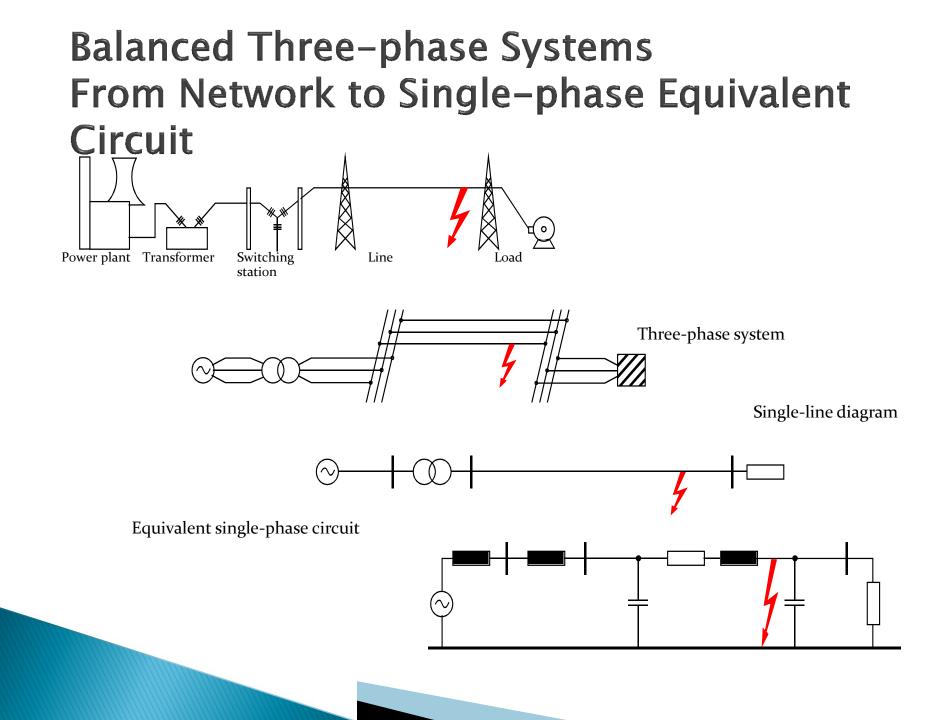
Lecture-2

Symmetrical component transformation

Topic Covered

- Three Phase System
- Balanced and Unbalanced faults
- Symmetrical Components
- Vector Presentation
- Matrix Relations



Balanced and Unbalanced faults

Balanced Cases

- -three-phase fault
- (symmetrical) load flow

Unbalanced Cases

- Single line to ground fault
- Line to line fault
- Double line to ground fault
- (unsymmetrical load flow)

Analyzing unbalanced system using Fortescue's Theorem

- Unbalanced faults in power systems require a phase by phase solution method or other techniques.
- One of the most useful techniques to deal with unbalanced networks is the "symmetrical component" method, developed in 1918 by C.L. Fortescue.

Symmetrical Components

Reasons for use of symmetrical component Unbalanced systems are difficult to handle

-> several independent balanced systems are easier to handle than one unbalanced system

Transformation of one unbalanced 3-phase system into 3 balanced 3-phase systems.

-> for each system only one phase has to be considered

Analyzing unbalanced system using Fortescue's Theorem

- Any three unbalanced set of voltages or currents can be resolved into three balanced systems of voltages or currents, referred to as the system symmetrical components, defined as follows:
 - Positive Sequence components: three phasors of equal magnitude displaced 120 degrees from each other following the positive sequence
 - Negative Sequence components: three phasors of equal magnitude displaced 120 degrees of each other following the negative sequence
 - Zero Sequence components: three parallel phasors having equal magnitude and angle

For a 3-ph system: 3 unbalanced phasors can be resolved into 3 balanced systems of 3 phasors each

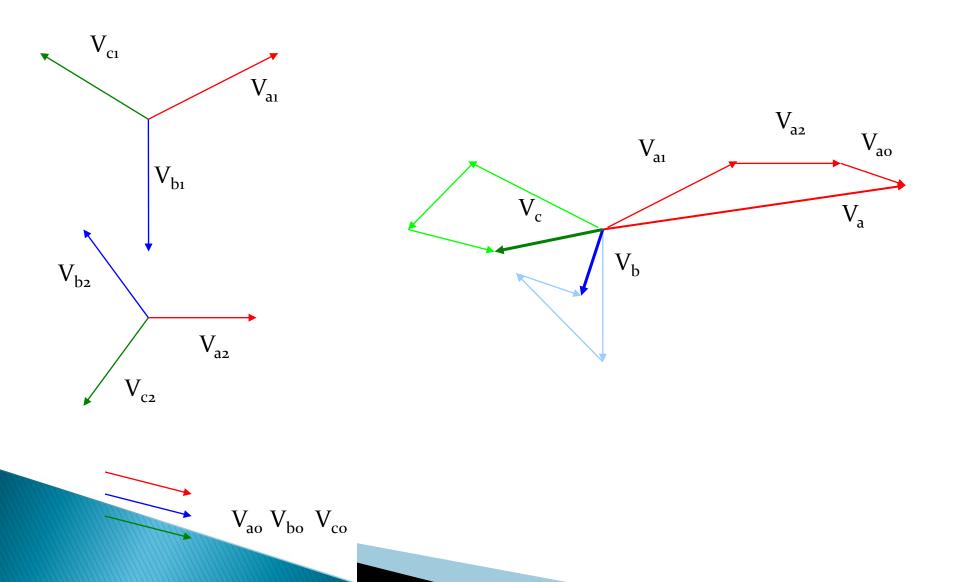
Let Va, Vb, Vc be the Phase voltages According to Fortescue, these can be transformed into Positive-seq. voltages: Va1, Vb1, Vc1 Negative-seq. voltages: Va2, Vb2,

Vc2

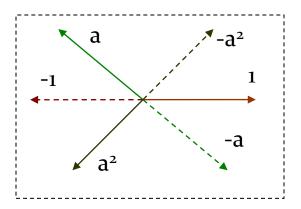
zero-sequence voltages: Va0, Vb0, Vc0

Thus, Va = Va1 + Va2 + Va0 Vb = Vb1 + Vb2 + Vb0Vc = Vc1 + Vc2 + Vc0

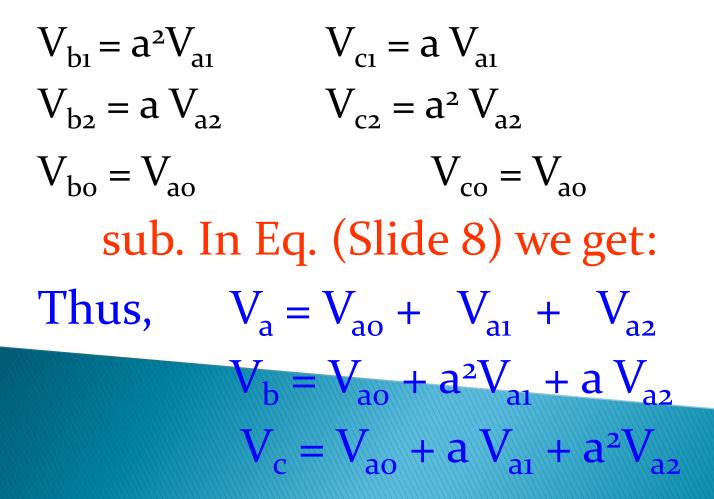
Vector Presentation



 $\frac{\text{The 'a' operator}}{a = 1 < 120^{\circ} = -0.5 + j \ 0.866}$ a I rotates I by 120° $a^{2} = 1 < 240^{\circ} = -0.5 - j \ 0.866$ $a^{3} = 1 < 360^{\circ} = 1 < 0^{\circ} = 1 + j \ 0$ $1 + a + a^{2} = 0$



From figure previous figures

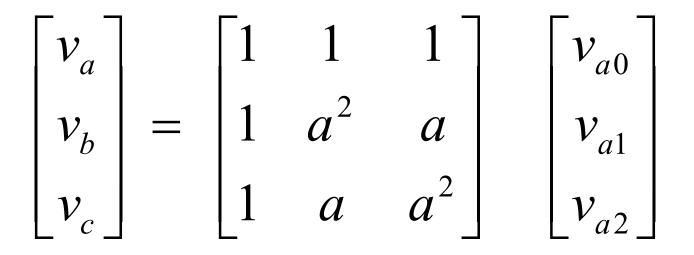


Let

$$Vp = \begin{bmatrix} v_a \\ v_b \\ v_c \end{bmatrix}; Vs = \begin{bmatrix} v_{a0} \\ v_{a1} \\ v_{a2} \end{bmatrix}; A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix}$$

And Inverse of A is

$$\mathbf{A}^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix}$$



Similarly currents can be obtained using their symmetrical components

$$V_p = A V_s; \quad V_s = A^{-1}V_p$$

$$V_{ao} = 1/3 (V_{a} + V_{b} + V_{c})$$
$$V_{a1} = 1/3 (V_{a} + aV_{b} + a^{2}V_{c})$$
$$V_{a2} = 1/3 (V_{a} + a^{2}V_{b} + aV_{c})$$

