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•Balanced Cases 

– three-phase fault  

– (symmetrical) load flow 

 

•Unbalanced Cases 

– Single line to ground fault 

– Line to line fault 

– Double line to ground fault 

– (unsymmetrical load flow) 



◦Unbalanced faults in power systems 
require a phase by phase solution 
method or other techniques.  

◦One of the most useful techniques to 
deal with unbalanced networks is the 
“symmetrical component” method, 
developed in 1918 by C.L. Fortescue. 



•Reasons for use of symmetrical component            
–Unbalanced systems are difficult to handle                           

•      -> several independent balanced systems are 

easier to handle   than one unbalanced system       

 

–                                                                                  
Transformation of one unbalanced 3-phase 
system into 3 balanced 3-phase systems. 

• -> for each system only one phase has to be 

considered 

 



 Any three unbalanced set of voltages or currents can be 
resolved into three balanced systems of voltages or 
currents, referred to as the system symmetrical 
components, defined as follows: 

 Positive Sequence components: three phasors of 
equal magnitude displaced 120 degrees from each 
other following the positive sequence 

Negative Sequence components: three phasors of 
equal magnitude displaced 120 degrees of each 
other following the negative sequence 

 Zero Sequence components: three parallel phasors 
having equal magnitude and angle 

For a 3-ph system:  3 unbalanced phasors can be 
resolved into 3 balanced systems of 3 phasors each 

 



Let Va, Vb, Vc be the Phase voltages            
 According to Fortescue, these can be 
transformed into 
Positive-seq.  voltages: Va1, Vb1, Vc1 
Negative-seq. voltages: Va2, Vb2, 
Vc2 
zero-sequence  voltages: Va0, Vb0, 
Vc0 
    Thus, Va = Va1 + Va2 + Va0 
            Vb = Vb1 + Vb2 + Vb0   
                   Vc = Vc1 + Vc2  + Vc0  
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The ‘a’ operator 
a =  1<1200  =   -0.5 + j 0.866  

a I rotates I by 1200 

a2 = 1<2400 =   -0.5 – j 0.866   

a3 = 1<3600  =  1<00  = 1 + j 0 

1 + a + a2 = 0 1 

a2 
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From figure previous figures 

 

Vb1 = a2Va1    Vc1 = a Va1 

Vb2 = a Va2      Vc2 = a2 Va2 

Vb0 = Va0               Vc0 = Va0  

 sub. In Eq. (Slide 8) we get: 

Thus, Va = Va0 +   Va1  +   Va2 

   Vb = Va0 + a2Va1 + a Va2 

           Vc = Va0 + a Va1 + a2Va2 



Matrix Relations 

 Let 

 

  

 
 And  Inverse of A is   
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Matrix Relations 

 

  

 
 

 
Similarly currents can be obtained using  their 

symmetrical components 
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Matrix Relations 

  Vp = A Vs;   Vs = A-1Vp   

 

Va0 = 1/3 (Va +  Vb  +  Vc) 

Va1 = 1/3 (Va +  aVb + a2Vc) 

Va2 = 1/3 (Va + a2Vb + aVc) 

 

 



Matrix Relations 
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