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Section D :  Frequency Domain Analysis 

Topic Covered :Relationship between frequency response and time 

response for 2nd order system, polar, Nyquist, Bode plots, stability, 

Gain-margin and Phase Margin, relative stability, frequency 

response specifications. 



No matter what we pick K to be, the closed-loop system must always have n poles, where 

n is the number of poles of G(s).  

The root locus must have n branches, each branch starts at a pole of G(s) and goes to a 

zero of G(s).  

If G(s) has more poles than zeros (as is often the case), m < n and we say that G(s) has 

zeros at infinity. In this case, the limit of G(s) as s -> infinity is zero.  

 

The number of zeros at infinity is n-m, the number of poles minus the number of zeros, 

and is the number of branches of the root locus that go to infinity (asymptotes).  

 

Since the root locus is actually the locations of all possible closed loop poles, from the 

root locus we can select a gain such that our closed-loop system will perform the way we 

want. If any of the selected poles are on the right half plane, the closed-loop system will 

be unstable. The poles that are closest to the imaginary axis have the greatest influence on 

the closed-loop response, so even though the system has three or four poles, it may still 

act like a second or even first order system depending on the location(s) of the dominant 

pole(s).  

The Root   Locus Method 



Example 



Closed-Loop Characteristic Equation (CLCE)  
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The closed-loop transfer function GYR(s) is: 

 

The closed-loop characteristic equation (CLCE) is: 

 

For simplicity, assume a simple proportional feedback 

controller: 

 
The transient performance specifications define a region on the 

complex plane where the closed-loop poles should be located. 

Q:  How should we choose KP such that the CL poles are within 
 the desired performance boundary? 
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Motivation 
Ex: The closed-loop characteristic equation for the DC motor positioning system 

under proportional control is: 

 
 

Q: How to choose KP such that the resulting closed-loop poles are in the 
desired performance region? 

– How do we find the roots of the equation: 

  
 

 as a function of the design parameter KP ? 

 

– Graphically display the locations of the closed-loop poles for all KP>0 
on the complex plane, from which we know the range of values for 
KP that CL poles are in the performance region.   
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Root Locus – Definition  
 Root Locus is the method of graphically displaying the roots of a polynomial 

equation having the following form on the complex plane when the 
parameter K varies from 0 to :  

 
 where N(s) and D(s) are known polynomials in factorized form: 

 

 
 Conventionally, the  NZ  roots of the polynomial N(s) , z1 , z2 , …, zNz , are called 

the finite open-loop zeros.  The  NP  roots of the polynomial D(s) ,  p1 , p2 , …, 
pNp , are called the finite open-loop poles.  

 

 

 Note:  By transforming the closed-loop characteristic equation of a feedback 
 controlled system with a single positive design parameter K into the 
 above standard form, one can use the Root Locus technique to 
 determine the range of K that have CL poles in the performance region.   
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Methods of Obtaining Root Locus 
• Given a value of  K, numerically solve the 1 + K G(s) = 0 equation to obtain all 

roots. Repeat this procedure for a set of K values that span from 0 to  and plot 
the corresponding roots on the complex plane.  
 

• In MATLAB, use the commands rlocus and rlocfind. A very efficient root locus 
design tool is the command rltool.   You can use on-line help to find the usage 
for these commands. 

  
 
 
 
 
 
 

 

 

 

• Apply the following root locus sketching rules to obtain an approximated root 
locus plot. 
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>> op_num=[0.48]; 

>> op_den=[0.0174 1 0]; 

>> rlocus(op_num,op_den); 

>> [K, poles]=rlocfind(op_num,op_den); 

No open-loop zeros 

Two open-loop poles 



Root Locus Sketching Rules 

Rule 1: The number of branches of the root locus is equal to the number 
of closed-loop poles (or  roots of the characteristic equation). In 
other words, the number of branches is equal to the number of 
open-loop poles or open-loop zeros, whichever is greater. 

Rule 2: Root locus starts at open-loop poles (when K= 0) and ends at 
open-loop zeros (when K=).  If the number of open-loop poles 
is greater than the number of open-loop zeros, some branches 
starting from finite open-loop poles will terminate at zeros at 
infinity (i.e., go to infinity). If the reverse is true, some branches 
will start at poles at infinity and terminate at the finite open-loop 
zeros. 

Rule 3: Root locus is symmetric about the real axis, which reflects the 
fact that closed-loop poles appear in complex conjugate pairs. 

Rule 4: Along the real axis, the root locus includes all segments that are 
to the left of an odd number of finite real open-loop poles and 
zeros. 
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Root Locus Sketching Rules 
Rule 5: If number of poles NP exceeds the number of zeros NZ , then as K, 

(NP - NZ) branches will become asymptotic to straight lines. These 
straight lines intersect the real axis with angles k at 0 . 

 

 

  

 

  

 If NZ  exceeds NP , then as K0, (NZ  - NP) branches behave as 
above. 

 

 

Rule 6: Breakaway and/or break-in (arrival) points should be the solutions to 
the following equations: 
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Root Locus Sketching Rules 
Rule 7: The departure angle for a pole pi ( the arrival angle for a zero zi) can be 

calculated by slightly modifying the following equation: 

 
  The departure angle qj from the pole pj can be calculated by replacing the 

term                 with qj  and replacing all the s’s with  pj  in the other terms. 
 
 

 

Rule 8: If the root locus passes through the imaginary axis (the stability boundary), 

the crossing point  j  and the corresponding gain K can be found as 

follows: 

– Replace s in the left side of the closed-loop characteristic equation 
with j  to obtain the real and imaginary parts of the resulting 
complex number. 

– Set the real and imaginary parts to zero, and solve for  and K.  This 
will tell you at what values of K and at what points on the j axis the 
roots will cross. 

1 2

1 2

P

z

N

N

s p s p s p
K

s z s z s z

- - -


- - -

 -   -    - -  - -  - - -  -  ( ) ( ) ( ) ( ) ( ) ( )s z s z s z s p s p s pN NZ p1 2 1 2 180 

( )js p -

magnitude criterion 

angle 
criterion 



Steps to Sketch Root Locus 
Step 1: Transform the closed-loop characteristic equation into the standard form 

for sketching root locus: 

 
 

Step 2: Find the open-loop zeros, zi, and the open-loop poles, pi.  Mark the open-
loop poles and zeros on the complex plane.  Use  to represent open-
loop poles and  to represent the open-loop zeros. 

 

Step 3: Determine the real axis segments that are on the root locus by applying 
Rule 4. 

 

Step 4: Determine the number of asymptotes and the corresponding 
intersection 0 and angles k  by applying Rules 2 and 5. 

 

Step 5: (If necessary) Determine the break-away and break-in points using Rule 
6. 

 

Step 6: (If necessary) Determine the departure and arrival angles using Rule 7. 
 

Step 7: (If necessary) Determine the imaginary axis crossings using Rule 8. 
 

Step 8: Use the information from Steps 1-7 and Rules 1-3 to sketch the root 
locus. 
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Example 1 
DC Motor Position Control 

In the previous example on the printer paper advance position control, the proportional control 
block diagram is: 

 

 

 

 
 

Sketch the root locus of the closed-loop poles as the proportional gain KP varies from 0 to . 
 

Find closed-loop characteristic equation: 
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Example 1 
Step 1: Transform the closed-loop characteristic equation into the standard form for 

sketching root locus: 
 
 
 
 
 
Step 2: Find the open-loop zeros, zi , and the open-loop poles, pi : 
 
 
 
 
 
Step 3: Determine the real axis segments that are to be included in the root locus by 

applying Rule 4. 
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Example 1 
Step 4: Determine the number of asymptotes and the corresponding intersection 

0  and angles k  by applying Rules 2 and 5. 

 

 

 

Step 5: (If necessary) Determine the break-away and break-in points using Rule 6. 

 

 

 

Step 6: (If necessary) Determine the departure and arrival angles using Rule 7. 

 

 

Step 7: (If necessary) Determine the imaginary axis crossings using Rule 8. 
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Example 1 
Step 8: Use the information from Steps 1-7 and Rules 1-3 to sketch the root locus. 
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Example 2 
A positioning feedback control system is proposed.  The corresponding block diagram 
is: 

 

 

 

 

Sketch the root locus of the closed-loop poles as the controller gain K varies from 0 to 
. 
 

Find closed-loop characteristic equation: 
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Example 2 
Step 1: Formulate the (closed-loop) characteristic equation into the standard form 

for sketching root locus: 

 

 

 

 

Step 2: Find the open-loop zeros, zi , and the open-loop poles, pi : 

 

 

 

 

 

Step 3: Determine the real axis segments that are to be included in the root locus 
by applying Rule 4. 
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Example 2 
Step 4: Determine the number of asymptotes and the corresponding intersection 0 and 

angles k  by applying Rules 2 and 5. 

 

 

 

 

 

 

Step 5: (If necessary) Determine the break-away and break-in points using Rule 6. 
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Example 2 
Step 6: (If necessary) Determine the departure and arrival angles using Rule 7. 

Step 7: (If necessary) Determine the imaginary axis crossings using Rule 8. 

Step 8: Use the information from Steps 1-7 and Rules 1-3 to sketch the root locus. 
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Example 3 
A feedback control system is proposed.  The corresponding block diagram is: 

 

 

 

 
 

Sketch the root locus of the closed-loop poles as the controller gain K varies from 
0 to . 
 

Find closed-loop characteristic equation: 
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Example 3 

Step 1: Transform the closed-loop characteristic equation into the 
standard form for sketching root locus: 

 

 

 

Step 2: Find the open-loop zeros, zi , and the open-loop poles, pi : 

 

 

Step 3: Determine the real axis segments that are to be included in 
the root locus by applying Rule 4. 
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Example 3 
Step 4: Determine the number of asymptotes and the corresponding intersection 0 and 

angles k  by applying Rules 2 and 5. 

 

 

 

 

 

 

 

Step 5: (If necessary) Determine the break-away and break-in points using Rule 6. 
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Example 3 
Step 6: (If necessary) Determine the departure and arrival angles using Rule 7. 

 

 

 

 

 

 

 

Step 7: (If necessary) Determine the imaginary axis crossings using Rule 8. 
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Example 3 
Step 8: Use the information from Steps 1-7 and Rules 1-3 to sketch the root locus. 
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Example 4 
A feedback control system is proposed.  The corresponding block diagram is: 

 

 

 
 

Sketch the root locus of the closed-loop poles as the controller gain K varies from 0 to 
. 
 

Find closed-loop characteristic equation: 
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Example 4 
Step 1: Formulate the (closed-loop) characteristic equation into the standard 

form for sketching root locus: 

 

 

 

Step 2: Find the open-loop zeros, zi , and the open-loop poles, pi : 

 

 

Step 3: Determine the real axis segments that are to be included in the root 
locus by applying Rule 4. 
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Example 4 
Step 4: Determine the number of asymptotes and the corresponding intersection 0 and angles k  

by applying Rules 2 and 5. 

 
Step 5: (If necessary) Determine the break-away and break-in points using Rule 6. 

Step 6: (If necessary) Determine the departure and arrival angles using Rule 7. 

 

 

 

 

 

Step 7: (If necessary) Determine the imaginary axis crossings using Rule 8. 
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Example 4 
Step 8: Use the information from Steps 1-7 and Rules 1-3 to sketch the root locus. 
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Root Locus as an Analysis/Design Tool 
Mechanical system response depends on the location of the system characteristic values, 
i.e., poles of the system transfer function.  Since root locus tells us how the system poles 
vary w.r.t. a parameter K, we can use root locus to analyze the effect of parameter 
variation on system performance. 
 

Ex: ( Motion Control of Hydraulic Cylinders ) 

M 

qqININ  

Recall the example of the flow control of a hydraulic 

cylinder that takes into account the capacitance effect of 

the pressure chamber.  The plant transfer function is: 

 
 

where M is the mass of the load; C is the flow capacitance 

of the pressure chamber; A is the effective area of the 

piston and B is the viscous friction coefficient. 

Q: How would the plant parameters affect the system 

 response ? 
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Root Locus as an Analysis/Design Tool 
• Effect of load (M) on system performance: 

 System characteristic equation: 

 

 Transform characteristic equation into standard form for root locus analysis by identifying the parameter 
that is to be varied.  In this case, the load mass M is the varying parameter: 
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Think about the settling time 



Root Locus as an Analysis/Design Tool 
• Effect of flow capacitance (C) on system performance: 

 System characteristic equation: 

 

 Transform characteristic equation into standard form for root locus analysis by identifying the parameter 
that is to be varied.  In this case, the flow capacitance C is the varying parameter: 

( )
0

( ) 2

d N s B
s

ds D s M

 
   - 

 
2z

MCs BCs A2 2 0  

Img. Axis 

Real 

Axis 

 

 

2
1 0

1

N s

D s

B
s s

M

M
C

A

 
 

 

 

 
 

1 0
N s

K
D s

 Standard form 

Varying parameter 

open-loop zeros 

open-loop poles 

1 20,
B

z z
M

  -

NO open-loop poles 

1z
Smaller C (or less compressible fluid): 

Larger oscillating frequency and overshoot 

Larger C: smaller oscillating frequency and overshoot 



Root Locus as an Analysis/Design Tool 
• Effect of friction (B) on system performance: 
 System characteristic equation: 

 

 Transform characteristic equation into standard form for root locus analysis by identifying the parameter 
that is to be varied.  In this case, the viscous friction coefficient B is the varying parameter: 
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Nyquist Plot or Polar Plot 

• Nyquist Plots were invented by Nyquist - who worked at Bell Laboratories, the 

premiere technical organization in the U.S. at the time. 

 

• Nyquist Plots are a way of showing frequency responses of linear systems.   

 

• There are several ways of displaying frequency response data, including Bode' 

plots and Nyquist plots. 

 

• Bode' plots use frequency as the horizontal axis and use two separate plots to 

display amplitude and phase of the frequency response. 

 

• Nyquist plots display both amplitude and phase angle on a single plot, using 

frequency as a parameter in the plot.  

 

• Nyquist plots have properties that allow you to see whether a system is stable or 

unstable. 



Nyquist Plot 

• A Nyquist plot is a polar plot of the frequency response function of a linear 

system. 

 

• That means a Nyquist plot is a plot of the transfer function, G(s) with s = jω.  That 

means you want to plot G(j ω). 

 

• G(j ω) is a complex number for any angular frequency, ω, so the plot is a plot of 

complex numbers. 

 

• The complex number, G(j ω), depends upon frequency, so frequency will be a 

parameter if you plot the imaginary part of G(j ω) against the real part of G(j ω). 



Sketch the Polar plot of Frequency Response 

To sketch the polar plot of G(jω) for the entire range of frequency ω, i.e., from 

0 to infinity, there are four key points that usually need to be known: 

 

1) The start of plot where ω = 0, 

2) The end of plot where ω = ∞, 

3) Where the plot crosses the real axis, i.e., Im(G(jω)) = 0, and 

4) Where the plot crosses the imaginary axis, i.e., Re(G(jω)) = 0. 



Problem-1: Polar Plot of Integrator 

Consider a first order system, 

Representing G(s) in the frequency response form G( jω ) by replacing s = jω: 

The magnitude of G( jω ), i.e., | G( jω) |, is obtained as; 

The phase of G( jω ), denoted by, φ , is obtained as; 

Bode Plot Polar Plot 

Magnitude 

Phase 



Problem-2: Polar Plot of First Order System 

Consider a first order system where T is the time constant. 

Representing G(s) in the frequency response form G( jω ) by replacing s = jω: 

The magnitude of G( jω ), i.e., | G( jω) |, is obtained as; 

The phase of G( jω ), denoted by, φ , is obtained as; 



The start of plot where ω = 0  

The end of plot where ω = ∞ 

The mid part of plot where ω = 1/T 



Polar Plot Bode Plot 

Magnitude 

Phase 



Problem-3: Polar Plot of Second Order System 

Consider a second order system where T is the time constant. 

Representing G(s) in the frequency response form G( jω ) by replacing s = jω: 

The magnitude of G( jω ), i.e., | G( jω) |, is obtained as; 

The phase of G( jω ), denoted by, φ , is obtained as; 



Polar Plot 

The start of plot where ω = 0  

The end of plot where ω = ∞ 



Problem-4: Sketch the Nyquist diagram for the system shown in the following 
figure, and then determine the system stability using the Nyquist criterion. 

(a) 



Point 1: The start of plot where ω = 0  

Now that we have expressions for the magnitude and phase of the frequency 

response, we can sketch the polar plot using the 4 key points. 



Point 3: Where the plot crosses the real axis, i.e., Im(G(jω)) = 
0 

Point 2: The end of plot where ω = ∞ 

Take the imaginary part of equation (a), and put equal to zero, to get the value 

of frequency ω at the interception of real axis. 



Point 4: Where the plot crosses the imaginary axis, Re(G(jω)) = 0 

Take the real part of equation (a), and put equal to zero, to get the value of 

frequency ω at the interception of imaginary axis. 



Problem-5: Sketch the polar plot for the following transfer function. 

Representing G(s) in the frequency response form G( jω ) by replacing s = jω, and 

then Multiply both numerator and denominator by the conjugate of denominator. 

(a) 



Point 1: The start of plot where ω = 0  

At frequency ω = 0, we only observe the most significant terms that take the effect. 

Magnitude at ω = 0: 

Phase at ω = 0: 

Point 2: The end of plot where ω = ∞ 

At frequency ω = ∞, we shall look at the most significant term that takes effect 

when the frequency approaches infinity. 

Magnitude at ω = ∞: 

Phase at ω = ∞: 



Point 3: Where the plot crosses the real axis, i.e., Im(G(jω)) = 
0 

Take the imaginary part of equation (a), and put equal to zero, to get the value 

of frequency ω at the interception of real axis. 



Point 4: Where the plot crosses the imaginary axis, Re(G(jω)) = 0 

Polar Plot 

|G(jω)| ∠G(jω) 

ω = 0 ∞ -90o 

ω = ∞ 0 -270o 

 

0 

Take the real part of equation (a), and put equal to zero, to get the value of 

frequency ω at the interception of imaginary axis. 



Problem-6: Sketch the polar plot for the following transfer function. 

Representing G(s)H(s) in the frequency response form G( jω )H(jω) by replacing s = 

jω: 

The magnitude of GH(jω) i.e., |GH(jω)|, is obtained as; 



Point 1: The start of plot where ω = 0  

Point 2: The end of plot where ω = ∞ 

Polar Plot 

|GH(jω)| ∠GH(jω) 

ω = 0 ∞ 0o 

ω = ∞ 0 -90o 



Introduction 

The frequency response of a system is defined as the steady-state response of 

the system to a sinusoidal input signal.  The sinusoid is a unique input signal, 

and the resulting output signal for a linear system, as well as signals throughout 

the system, is sinusoidal in the steady-state; it differs form the input waveform 

only in amplitude and phase. 
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Frequency Response Plots 

 

Polar Plots 
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Frequency Response Plots 

 

Polar Plots 
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Bode Plots – Real Poles 
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Bode Plots – Real Poles 
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Frequency Response Plots 

 

Bode Plots – Real Poles 
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Frequency Response Plots 

 

Bode Plots – Real Poles (Graphical Construction) 



Frequency Response Plots 

 

Bode Plots – Real Poles 
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Bode Plots – Real Poles 



si j ii end 10
i r

range variable:i 0 N..range for plot:

r log
st art

end









1

N
step size:

end 100highest frequency (in Hz):

N 50number of points:st art .01lowest  frequency  (in Hz):

Next, choose a frequency range for the plots (use powers of 10 for convenient plotting):

G s( )
K

s 1 s( ) 1
s

3












K 2

Assume 

ps G   180


arg G j    360 if arg G j    0 1 0  -

Phase shift :

db G   20 log G j   

Magnitude:

Frequency Response Plots 
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Bode Plots – Real Poles 
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Bode Plots – Complex Poles 
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Bode Plots – Complex Poles 
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Bode Plots – Complex Poles 
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Bode Plots – Complex Poles 
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Bode Plots – Complex Poles 
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Bode Plots – Complex Poles 



Ultimate Gain and Ultimate Period 

 
• Ultimate Gain:    KCU = maximum value of |KC| that results in a  

   stable closed-loop system when proportional-only  
   control is used. 

 
• Ultimate Period:  

 
 

• KCU can be determined from the OLFR when 
   proportional-only control is used with KC =1. Thus 

 
 
 
 
 

• Note: First and second-order systems (without time delays)  
  do not have a KCU value if the PID controller action is correct. 
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Gain and Phase Margins 

• The gain margin (GM) and phase margin (PM) provide  

   measures of how close a system is to a stability limit. 
 

• Gain Margin: 
          Let   AC = AROL at  = C. Then the gain margin is  

          defined as: GM = 1/AC 

  
          According to the Bode Stability Criterion,  GM >1  stability 

 
• Phase Margin: 

          Let g = frequency at which  AROL = 1.0   and the  
          corresponding phase angle is g . The phase margin  

          is defined as: PM = 180° + g  
  

          According to the Bode Stability Criterion,  PM >0  stability 
  

          See Figure 14.12. 





Rules of Thumb: 
A well-designed FB control system will have: 

 

 
 

Closed-Loop FR Characteristics: 
An analysis of CLFR provides useful information about control 
system performance and robustness. Typical desired CLFR for 

disturbance and setpoint changes and the corresponding 
step response are shown in Appendix J. 
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