

Lecture- 10

Project Scheduling

Dronacharya College of Engineering

Scheduling and Planning

• The majority of projects are 'completed' late, if at all.

• A project schedule is required to ensure that required

project commitments are met.

• A schedule is required to track progress toward

achieving these commitments.

Why Software Is Delivered Late?

 An unrealistic deadline

 Changing but unpredicted customer requirements

 Underestimation of efforts needed

 Risks not considered at the project start

 Unforeseen technical difficulties

 Unforeseen human difficulties

 Miscommunication among project staff

 Failure to recognize that project is falling behind schedule

“One day at a time”

All technical projects involve 100s of small tasks

Some tasks do no affect the project completion

Other tasks are critical for project completion

Project manager must:

define all project tasks

build a network that depicts their interdependence

identify the critical tasks

track the progress of these tasks

recognize the delay “one day at a time”

Two different Perspectives to view

Scheduling

End date for

completion has

been finalized

Only Rough

time-frame is

given

People and Effort

“If we fall behind schedule we can always add more

programmers and catch to late in the project”

Has a disruptive effect on the project

Schedules slip even further

People and Effort

The relationship between the number of

people working in software project and

overall productivity is

 not linear

Fewer people and

longer time period is a

better option for software

development

Effort Distribution

Front-end

Analysis &

Design

40-20-40

Back-end

testing
Coding

Effort Allocation

40-50%

30-40%

• “front end” activities
– customer

communication
– analysis
– design
– review and modification

• construction activities

– coding or code

generation

• testing and installation
– unit, integration
– white-box, black box
– regression

15-20%

Basic Principles for SE Scheduling

• Compartmentalization – define distinct tasks

• Interdependency- parallel and sequential tasks

• Time allocation - assigned person days, start time,

ending time)

• Effort validation - be sure resources are available

• Defined responsibilities — people must be
assigned

• Defined Outcomes- each task must have an output

• Defined milestones - review for quality

Scheduling and Planning

 In order to make a schedule, the following tasks
must be completed:
• Identify manageable activities and tasks by decomposing the process and

the product.

• Determine which tasks are dependent on the completion of others. (Which
activities must occur in sequence and which can occur concurrently.)

• Allocate each task a number of work-units (often person-days), a start date
and a completion date.

• Define responsibilities for the tasks (allocate them to a person or persons).

• Define outcomes of the tasks (deliverables) and milestones for the
schedule.

• Review the proposed tasks, their effort allocation and start and end dates
with the people involved to ensure there are no conflicts and over
allocation.

Identifying Tasks

 The first step :

 Identify The Tasks Required To Be Performed.

 These tasks will comprise software engineering activities broken

down for product functions.

 A schedule is not a fixed entity and as such it will be refined as a

project progresses.

• Initially rough

 a project schedule usually refers to the work tasks, deliverables and

milestones for major software engineering activities and major product

functions

• is refined in detail

 as the project progresses to refer to specific tasks and activities that must be

completed for those major activities and functions.

Selecting Project Tasks

 No Set Of Tasks Is Appropriate For All Projects.

 The set of tasks that are appropriate for a project depends on a

number of factors. These include:

• The process model selected. An iterative development model

would require different tasks, etc... than would a waterfall

model or rapid application development model.

• The type of project. A new development project has a

different set of tasks to a maintenance project or to a concept

development.

• The size and complexity of the product.

• The rigor required in development. This is a factor generally

determined by things like product size, mission criticality,

stability of requirements, etc...

Selecting Project Tasks

• Milestone = end-point of a specific, distinct software process
activity or task (for each milestone a report should be presented
to the management)

• Deliverable = project result delivered to the client

 In order to establish milestones the phases of the software
process phases need be divided in basic activities/tasks.

Evaluation
report

Prototype
development

Requirements
definition

Requirements
analysis

Feasibility
report

Feasibility
study

Architectural
design

Design
study

Requirements
specification

Requirements
specification

ACTIVITIES

MILESTONES

Defining Task Sets

• determine type of project

• assess the degree of rigor required

– identify adaptation criteria

– compute task set selector (TSS) value

– interpret TSS to determine degree of

rigor

• select appropriate software

engineering tasks

Software Project Types

• Concept Development projects

• New Application Development Projects

• Application Enhancement Project

• Application Maintenance Project

• Reengineering Project

Degree of Rigor

Casual

• Minimum task set is
required

•Umbrella tasks are
minimized

•Documentation
requirements are
reduced

•Basic principles of
SE are applicable

Structured

•Framework activities
will be applied

•Umbrella tasks are
applied

•Documentation and
measurement tasks
will be done in a
streamlines manner

Strict

•Full process will be
applied

•Degree of discipline
ensures high quality

•All umbrella activities
will be applied

•Robust work products
will be produced

Quick Reaction

•Process framework
will be applied

•Only essential tasks
will be undertaken

• Documentation will
be provided after
product delivery

Adaptation Criteria

 Size of the Project

 Number of potential users

 Mission criticality

 Application Longevity

 Stability requirements

 Ease of communication

 Maturity of technology

 Performance constraints

 Embedded and non-embedded characteristics

 Project staff

 Reengineering factors

5 1

Task Set selector

• Based on adaptation criteria, TSS is computed

TSS > 1.2

Strict

1.0 < TSS < 3.0

Casual

TSS > 2.4

Structured

Activity Network Diagrams

 An activity network diagram provides a notation for

documenting

• a network of tasks needed to complete a project,

• their interdependencies

• the times required for each task.

 There are a number of activity network techniques which

are similar in nature. The most commonly used include

PERT (Project Evaluation and Review Technique) and

CPM (Critical Path Method).

Pert Chart

 A simple PERT chart comprises circles (nodes) to
represent events within the development lifecycle

 For example commencement / completion of tasks, and
lines (edges) which represent the the tasks. The lines are
additionally labeled by the estimated duration of the task.

 Note: there are a number of variations to this notation. A
real PERT chart shows earliest time to completion, latest
time to completion, and slack in the circles also.

How to construct a PERT chart

 The basic steps to constructing a PERT chart are:

• Identify tasks and estimate duration of times

• Identify a single start and end event

• Arrange events in sequence (give events a unique number)

• Establish start and finish times of each task. Keep in mind the

estimates made for duration and effort.

• Determine float

• Revise

Pert Chart

As an example of using a PERT chart, consider the following simple

chart showing a project with tasks A,B,C,D and E

This diagram states that tasks A,B,C and E will take 2 days

(assume d is abbreviation for days) and task D has a planned

duration of 5 days.

Task D is dependent on completion of task B, etc.

1

2 4

5

3

 A

2d

 B

2d

 C

2d

 E

2d

 D

5d

The Critical Path

 The critical path is the path between the start event and end

event which takes the longest time.

 Note that:

• No task on the critical path can take longer without extending

the end date of the project.

• Tasks on the critical path are called critical tasks.

• No critical task can have any slack.

• Tasks on the critical path must be carefully monitored.

The Critical Path

In the example above the critical path can be described by events 1,3 and 5 or by
tasks B,D.

This is because the time to reach the end event (5) on this path is longer than any
other path. This means that task B must take no longer than 2 days and task D no
longer than 5 days or the end date for event E will need to be extended.

The duration of the other path is 6 days. Because the critical path is 7 days, there is
slack (or float) of one day on the other path.

This means that this path can take 1 day longer than planned.

That is, any one task on this path (A,C or E) can take 1 day longer than expected.
Note this slack must be shared between the tasks on this other path. They can not
all take an extra day

1

2 4

5

3

 A

2d

 B

2d

 C

2d

 E

2d

 D

5d

Example:

PERT/CPM Chart

1

2

3

4

5

6

8

7

5

6

2

6

5 3

1

TE = 5

TE = 11

TE = 12

TE = 14

TE = 20

TE = 19 TE = 22

TE = 23

27

Task. A project has been defined to contain the following list of

activities along with their required times for completion:

Activity
No

Activity Expected
completion time

Dependency

1. Requirements collection 5 -

2. Screen design 6 1

3. Report design 7 1

4. Database design 2 2,3

5. User documentation 6 4

6. Programming 5 4

7. Testing 3 6

8. Installation 1 5,7

a. Draw a PERT chart for the activities.

b. Calculate the earliest expected completion time.

c. Show the critical path.

PERT/CPM Chart (cont’d)

28

a. Draw a PERT chart for the activities.

Using information from the table, show the sequence of activities.

1

2

3

4

5

6

8

7

29

1

2

3

4

5

6

8

7

b. Calculate the earliest expected completion time.

1. Using information from the table, indicate expected completion time for

each activity.

5

6

7

2

6

5 3

1

2. Calculate earliest expected completion time for each activity (TE) and the entire

project.

Hint: the earliest expected completion time for a given activity is determined by summing

the expected completion time of this activity and the earliest expected completion time of

the immediate predecessor.

Rule: if two or more activities precede an activity, the one with the largest TE is used in

calculation (e.g., for activity 4, we will use TE of activity 3 but not 2 since 12 > 11).

TE = 5

TE = 11

TE = 12

TE = 14

TE = 20

TE = 19 TE = 22

TE = 23

PERT/CPM Chart (the end)

30

1

2

3

4

5

6

8

7

5

6

2

6

5 3

1

TE = 5

TE = 11

TE = 12

TE = 14

TE = 20

TE = 19 TE = 22

TE = 23

c. Show the critical path.

The critical path represents the shortest time, in which a project can be completed. Any activity

on the critical path that is delayed in completion, delays the entire project. Activities not on the

critical path contain slack time and allow the project manager some flexibility in scheduling.

Project Scheduling

Program

Evaluation

and Review

Technique

(PERT)

Critical

Path

Method

(CPM)

