FSCANF() AND FPRINTF()

similar to scanf() and printf()
In addition provide file-pointer
given the following
file-pointer f1 (points to file opened in write mode)
file-pointer f2 (points to file opened in read mode)
Integer variable |
float variable f
Example:
forintf(f1, “%d %fn”, i, f);
fprintf(stdout, “%f \n”, f);
fscanf(f2, “%d %f’, &i, &f);
fscanf returns EOF when end-of-file reached

GETW() AND PUTW()
handle one integer at a time
syntax: putw(i,fpl);
| . an integer variable
fpl : pointer to file ipened with mode w
syntax: | = getw(fp2);
| . an integer variable
fp2 . pointer to file opened with mode r

file pointer moves by one integer position, data stored in
binary format native to local system

getw() returns end-of-file marker EOF when file end
reached

t#npladeststdio OB ING GETW, PUT)

main()
{inti,sum1=0;
FILE *f1;

f1 = fopen("int_data.bin","w");

for(i=10;i<15;i++)
fclose(fl);
f1 = fopen("int_data.bin","r");
while((i=getw(f1))!=EOF)
{ suml+=i;
printf("binary file: i=%d\n",i);
}
printf("binary sum=%d,sum1);
fclose(fl);

}

putw(i,f1);

v,

Fanciude, sstaiophpr

main()

{ inti, sum2=0;
FILE *f2;

f2 = fopen("int_data.txt","w");

for(i=10;i<15;i++) printf(f2,"%d\n",);
fclose(f2);

f2 = fopen("int_data.txt","r");
while(fscanf(f2,"%d",&i)!=EOF)

{ sum2+=i; printf("text file:
1=%d\n",1);

}

printf("text sum=%d\n",sumz2);
fclose(f2);

}

ON EXECUTION OF PREVIOUS PROGRAMS

$./a.out

binary file: 1=10
binary file: =11
binary file: 1=12
binary file: 1=13
binary file: =14

binary sum=60,
$ cat int_data.txt
10

11

12

13

14

$./a.out

text file: 1=10
text file: =11
text file: 1=12
text file: 1I=13
text file: iI=14
text sum=60

$ more int_data.bin

/\@/\@/\@/\K/\@/\@/\@/\L/\@/\@/\
@/\M/\@/\@/\@/\N/\@/\@/\@

$

ERRORS THAT OCCUR DURING /O

Typical errors that occur

trying to read beyond end-of-file

trying to use a file that has not been opened

perform operation on file not permitted by ‘fopen’ mode
open file with invalid filename

write to write-protected file

ERROR HANDLING
given file-pointer, check if EOF reached, errors while

handling file, problems opening file etc.
check if EOF reached: feof()

feof() takes file-pointer as input, returns nonzero Iif all
data read and zero otherwise

if(feof(fp))
printf(“End of data\n”);

ferror() takes file-pointer as input, returns nonzero integer
If error detected else returns zero

if(ferror(fp) '=0)
printf(“An error has occurred\n”);

ERROR WHILE OPENING FILE

If file cannot be opened then fopen returns a NULL
pointer

Good practice to check if pointer is NULL before
proceeding

fp = fopen(“input.dat”, “r’);

If (fp == NULL)
printf("File could not be opened \n ”);

RANDOM ACCESS TO FILES

how to jJump to a given position (byte number) in a file
without reading all the previous data?

fseek (file-pointer, offset, position);

position: O (beginning), 1 (current), 2 (end)

offset: number of locations to move from position
Example: fseek(fp,-m, 1); /* move back by m bytes from current

position */
fseek(fp,m,0); /* move to (m+1)th byte in file */
fseek(fp, -10, 2); /* what is this? */

ftell(fp) returns current byte position in file
rewind(fp) resets position to start of file

COMMAND LINE ARGUMENTS

can give input to C program from command line

E.g. > prog.c 10 namel
namez2

how to use these arguments?
main (int argc, char *argv[])

argc — gives a count of number of arguments (including
program name)

char *argv[] defines an array of pointers to character (or array
of strings)

argv[0] — program name
argv[l] to argv[argc -1] give the other arguments as strings

EXAMPLE ARGS.C

#include <stdio.h>

main(int argc,char *argv[])

{
while(argc>0) /* print out all arguments in reverse order*/
{
printf("%s\n",argv[argc-1]);
argc--;
}
}

$ cc args.c -0 args.out

$.Jargs.out 2 join leave 6
6

leave

join

2

Jargs.out

$

