|

External Sorting

Why Sort?

% A classic problem in computer science!

+ Data requested in sorted order
- e.g., find students in increasing gpa order

% Sorting is first step in bulk loading B+ tree index.

+ Sorting useful for eliminating duplicate copies in a
collection of records

% Sort-merge join algorithm involves sorting.

< Problem: sort 10GB of data with 1MB of RAM.

Using secondary storage effectively

+ General Wisdom :
" [/O costs dominate
= Design algorithms to reduce I/O

Overview on Merge-Sort

< Merge : Merge two sorted lists and repeatedly choose the
smaller of the two “heads” of the lists

» Merge Sort: Divide records into two parts; merge-sort those
recursively, and then merge the lists.

81 94 11 % 12 35 17 99

/\

81 94 11 96 12 35 17 99

Can recursively divide Sort Sort
again and again

11 81 94 96 12 17 35 99

Overview on Merge-Sort (Cont'd)

< Merge : Merge two sorted lists and repeatedly choose the
smaller of the two “heads” of the lists

81 94 11 9% 12 35 17 99

/\

81 94 11 96 12 35 17 99
Can recursively
divide again and Sort Sort
again
11 81 94 96 12 17 35 99
\I\/Ierge/

11 12 17 35 81 94 96 99

2-Way Sort: Requires 3 Buffers

<+ Phase 1: PREPARE. =
: - input > =
= Read a page, sort it, write it. Main memory =
- only one buffer page is used =
Disk *
< Phase 2,3, ..., etc.: MERGE:
Three butfer pages used.
>) b“ff;r - S
. ;| INPU
| I > \ 1 buffer
| 1 buffer - OUTPUT dt |
I i " INPUT 2
. .
Disk Main memory buffers

Two-Way External Merge Sort

. 34 (62 [0,4] [87] [56 [32 [2] I nputtile
% Idea: Divide and 1 1] T 1 passo
Conquer: sort 3,4 12,6/ |4,9] (7.8 [5,6] |13] [2 - 1-page runs
: NN NY N7 PAss1
subfiles and merge 47 e
. 2.3 ’ ’ 2-page runs
into larger sorts 46 8.9 5,6
N PASS 2
4.4 1.2 4-page runs
Pass 0 = Only one G 3{35
- 8.9
memory block is needed \./ DAGS 3
1,2
Pass | >0 =» Only three gj
memory blocks are needed 15 8-page runs
6,6
7,8
9

Two-Way External Merge Sort

34 (62 [0,4] [87] [56 [32 [2] I nputtile

e -l PASS 0
R for one pass:; |34 28 149 L28 156 LL3) L2] MM 1-pageruns
CﬁStS © P w4 4 N7 PASS 1
a ages 2.3 4,7 1,3 5
Pag 46 515 o page runs
. : ~ < PASS 2
< # of passes : 2z \‘
height Of tree 4.4 1.2 4-page runs
6.7 35
8.9 6

< Total cost : \./ PASS 3

product of above Lo
2,3
Notice: We ignored the g2 8-page runs
CPU cost to sort a block in 22
memory or merge two 78
blocks 9

>

Two-Way External Merge Sort

Each pass we read + write
each page in file.
N pages in file => 2N

Number of passes

=|log, N | +1

So total cost is:

2N([log, N]+1)

3,4

6,.2| [9,4| [8,7] [5

6] (3,1

\ 4

\ 4 \ 4 \ 4

A

y \ 4

«
<

3.4] [2.6] (49 [7.8 [56] [13] [2] IR
AN y4 N\ y4 N\ y4 \ y4
N N N
2,3 4,7 1,3
4,6 8,9 5,6
e e
\L_A/
2,3
4.4 1.2
6,7 3,5
8.9 6

—~r—

1,2

2,3

3,4

4,5

6,6

7,8

9

2 - Input file

PASS 0
1-page runs
PASS 1

2-page runs

PASS 2

4-page runs

PASS 3

8-page runs

|

External Merge Sort

% What if we had more buffer pages?
<+ How do we utilize them wisely ?

-—> Two main ideas |

10

Phase 1 : Prepare

Ty INPUT 1
/

-\

] INPUT 2

-

B Main memory buffers

e Construct as large as possible starter lists.

Disk

o=> Will reduce the number of needed passes

11

Phase 2 : Merge

<> | |mPpuT1 < >
| I
| | > INPUT 2 \
T3 OUTPUT | |
| H—_ /
.~ | TSINPUT B-1 —
Disk Disk

B Main memory buffers

< Merge as many sorted sublists into one long sorted list.
<+ Keep 1 buffer for the output
< Use B-1 buffers to read from B-1 lists

General External Merge Sort

How can we utilize more than 3 buffer pages?

+ To sort a file with N pages using B buffer pages:

= Pass 0: use B buffer pages.
Produce [N/ B]| sorted runs of B pages each.

= Pass 1,2, ..., etc.: merge B-1 runs.

> INPUT 1 < >
\// >

| T \ | |
| | >l INPUT 2
[] [] [] \ > I I

OUTPUT

////Y I |
| |‘\
.~ |TINPUT B-1 —
Disk Disk

B Main memory buffers

13

Cost of External Merge Sort

» Number of passes: 1+]logs ,[N/B]]
% Cost = 2N * (# of passes)

14

Example

Buffer : with 5 buffer pages
File to sort : 108 pages

\/
0’0
\/
0’0

= Pass O:
e Size of each run?
« Number of runs?

= Pass 1:
e Size of each run?
« Number of runs?

= Pass 2: ?7?7?

15

|

Example

% Buffer : with 5 buffer pages

< File to sort : 108 pages
= Pass 0: |_108 / 5_| = 22 sorted runs of 5 pages each
{ (last run is only 3 pages)

« Pass1: |22 /4= 6 sorted runs of 20 pages each

[(last run is only 8 pages)

= Pass 2: 2 sorted runs, 80 pages and 28 pages
= Pass 3: Sorted file of 108 pages

\

e Total I/O costs: 7

16

|

Example
< Buffer : with 5 butfer pages
<+ File to sort : 108 pages

« Pass 0:[108 / 57 = 22 sorted runs of 5 pages each
(last run is only 3 pages)

« Pass1:|22/4] =6 sorted runs of 20 pages each
(last run is only 8 pages)

= Pass 2: 2 sorted runs, 80 pages and 28 pages
= Pass 3: Sorted file of 108 pages

e Total I/O costs: 2*N * (4 passes)

17

I

Example: 2-Way Merge for 20 Runs

\ VYV WP\QPLOM\/Z P@” Rlvmmmvlemi;zo

v VAV VRV

\/ i
\/

\/

Number of passes = 5

|

Example: 5-Way Merge for 20 Runs

R1 RXRC% R4 R5 R%F\?/R9 R1I0R1l R12 R13R14 R15 R16R17Y RTR 9 R20
S2

S1 S3 S4

TS

T1

Number of passes = 2

19

Number of Passes of External Sort

- gain of utilizing all available buffers
- Importance of a high fan-in during merging
#Buffers available in main-memory

A

N B=3 |B=5 |[B=9 B=17|B=129 B=257
100 7 4 3 2 1 1
1,000 10 | 5 4 3 2 2
10,000 13 | 7 5 4 2 p)
#pages | | 100,000 17 | 9 6 5 3 3
inFile ™17 000,000 20 | 10 7 5 3 3
10,000,000 23 | 12 8 6 4 3
100,000,000 | 26 | 14 9 7 4 4
1,000,000,000/ 30 | 15 10 8 5 4

