The Heap Data Structure

e Def: A heap Is a nearly complete binary tree with
the following two properties:

— Structural property: all levels are full, except
possibly the last one, which is filled from left to right

— Order (heap) property: for any node x
Parent(x) > x

(8) From the heap property, it
follows that:
(7) (4) “The root is the maximum
G Q) element of the heap!”
Heap

A heap is a binary tree that is filled in order

Array Representation of Heaps

* A heap can be stored as an

array A.

— Root of tree is A[1]

— Left child of A[i] = A[2i]

— Right child of A[i] = A[2i + 1]

— Parent of A[i]= A[Li/2]]

— Heapsize[A] < length[A]
 The elements in the subarray

A[(Ln/21+1) .. n] are leaves

Heap Types

 Max-heaps (largest element at root), have the
max-heap property:
— for all nodes i, excluding the root:
A[PARENT()] 2 A[i]

* Min-heaps (smallest element at root), have the
min-heap property:
— for all nodes i, excluding the root:
A[PARENT()] ¢ A[i]

Adding/Deleting Nodes

 New nodes are always inserted at the bottom
level (left to right)
* Nodes are removed from the bottom level (right

to left)
o)

T

~
(a)
= e py

" 2 U \13) &,

R 7

U’ IANVANY,

Operations on Heaps

Maintain/Restore the max-heap property
— MAX-HEAPIFY

Create a max-heap from an unordered array
— BUILD-MAX-HEAP

Sort an array In place
— HEAPSORT

Priority queues

Maintaining the Heap Property

Suppose a node is smaller than a
child

Left and Right subtrees of i are max-heaps

To eliminate the violation: ‘f 0

Exchange with larger child
Move down the tree 0 o

Continue until node is not smaller than
children e ° o

Example

MAX-HEAPIFY(A, 2, 10)
l

Heap property restored

Maintaining the Heap Property

« Assumptions: Alg: MAX-HEAPIFY(A, i, n)

— Leftand Right 1. |« LEFT(i)
subtrees of i are 2. r « RIGHT(i)

max-heaps 3. ifl<nand A[l]> A[i]

- A[i]ITayhbe | then largest «|
smaller than its :
“hildren else largest «i

then largest «r
. if largest # i
then exchange A[i] « A[largest]
10. MAX-HEAPIFY(A, largest, n)

4
.
6. ifr<nand A[r]> A[largest]
.
8
9

8

MAX-HEAPIFY Running Time

* Intuitively:

- It traces a path from the root to a leaf (longest path length: h)
- At each level, it makes exactly 2 comparisons

- Total number of comnarisons 1s 2h

- Running time 1s + O(h) or O(/gn)

 Running time of MAX-HEAPIFY is O(Ign)
« Can be written in terms of the height of the heap,

as being O(h)
— Since the height of the heap is | Ign_

Building a Heap

« Convertan array A[1 .. n] into a max-heap (n = length[A])
* The elements in the subarray A[(Ln/2]+1) .. n] are leaves
. Apply MAX-HEAPIFY on elements between 1 and | n/2]

Alg: BUILD-MAX-HEAP(A)

1. n=length[A]

2. fori«—|n/2]downto1

3 do MAX-HEAPIFY(A. i. n)

Example:

A

16

10

14

11

Running Time of BUILD MAX HEAP

Alg: BUILD-MAX-HEAP(A)
1. n=length[A]
2. fori«|n/2]downto 1
O(n)
3. do MAX-HEAPIFY(A,i,n) O(lgn)

= Running time: O(nlgn)

* This Is not an asymptotically tight upper bound

12

Running Time of BUILD MAX HEAP

« HEAPIFY takes O(h) = the cost of HEAPIFY on a node i is
proportional to the height 01:1 the node i in the tree

= T(M)=Ynh = X2 (h-i) =0(n)

Height =0 Level No. of nodes
h, = 3 (Lign.) i=0 20
\ J

h, =2 i=1 21
) . 4

v 00303030 =sum_a

h,=h—1 height of the heap rooted at level |
n,=2 number of nodes at level i

13

Running Time of BUILD MAX HEAP

h
T(n) = Z n.h Cost of HEAPIFY at level i * number of nodes at that level
i~0
h -
=Y 2'(h—i) Replace the values of n; and h; computed before
i=0
b h_i . | |
_ Z _ 2h Multiply by 2" both at the nominator and denominator and
e oh write 2i as L

-

Dk
h
=2 Z? Change variables: k =h - |

k=0

< nZL The sum above is smaller than the sum of all elements to «
i Dk and h = Ign

— O(n) The sum above is smaller than 2

Running time of BUILD-MAX-HEAP: T(n) = O(n)

14

Heapsort

« Goal:
— Sort an array using heap representations (7)
* |dea: (4 ©

— Swap the root (the maximum element) with the last

— Build a max-heap from the array

element in the array
— “Discard” this last node by decreasing the heap size
— Call MAX-HEAPIFY on the new root

— Repeat this process until only one node remains

15

Example: A=[7, 4, 3, 1, 2]

MAX-HEAPIFY(A, 1, 4) MAX-HEAPIFY(A, 1, 3) MAX-HEAPIFY(A, 1, 2)

@/@@ @ O +[0DBED

® O @

MAX-HEAPIFY(A, 1, 1)

16

> W o

Alz: HEAPSORT(A)

BUILD-MAX-HEAP(A)
for i «— length[A] downto 2
do exchange A[l] « A[i]
MAX-HEAPIFY(A, 1,i - 1)

Running time: O(nlgn) --- Can be
shown to be O(nlgn)

O(n)

>n-1times

O(lgn),

17

Priority Queues

Properties
- Each element 1s associated with a value (priority)

- The key with the highest (or lowest) priority 1s extracted first

12 t—] 9 | +—=| a4 [|X

18

Operations
on Priority Queues
« Max-priority queues support the following
operations:

— INSERT(S, x): inserts element x into set S

— EXTRACT-MAX(S): removes and returns element of

S with largest key
— MAXIMUM(S): returns element of S with largest key

— INCREASE-KEY(S, x, k): increases value of element

x’s key to k (Assume k > x’s current key value)

19

HEAP-MAXIMUM

Goal:

— Return the largest element of the heap

Alg: HEAP-MAXIMUM(A)
1. return A[1]
Heap A:

Heap-Maximum(A) returns 7

Running time: O(1)

20

Goal:

ldea:

HEAP-EXTRACT-MAX

Extract the largest element of the heap (i.e., return the max
value and also remove that element from the heap

Exchange the root element with the last
Decrease the size of the heap by 1 element
Call MAX-HEAPIFY on the new root, on a heap of size n-1

Heap A: @ Root is the largest element

O@lRO

O © .

Example: HEAP-EXTRACT-MAX

max = 16 (14) 10
& @@ G
2 @

Heap size decreased with 1

19

(8) 10

Call MAX-HEAPIFY(A, 1, n-1)

22

HEAP-EXTRACT-MAX

Alg: HEAP-EXTRACT-MAX(A, n)

1. ifn<1
then error “"heap underflow”
max «— A[1]

2
3
4. A[l] < A[n]
5
6

MAX-HEAPIFY(A, 1, n-1) > remakes heap

return max

Running time: O(lgn)

23

HEAP-INCREASE-KEY

« Goal:
— Increases the key of an element i in the heap

* |dea:
— Increment the key of A[i] to its new value

— If the max-heap property does not hold anymore:

traverse a path toward the root to find the proper
place for the newly increased key

Key [i] 15 (2) 99

24

Example: HEAP-INCREASE-KEY

25

HEAP-INCREASE-KEY

Alg: HEAP-INCREASE-KEY(A, i, key)

if key < A[i]
then error “new key is smaller than current key”
Ali] — key
while i >1 and A[PARENT(i)] < A[i]
do exchange A[i] < A[PARENT(i)]
i «— PARENT(i)

ok wWwbdPE

Running time: O(lgn)

Key [l] — 15

26

MAX-HEAP-INSERT

« Goal:
. 16
— Inserts a new element into a max-
heap (14) 10
e |dea: 6 @ @ 9
| 2 WO &
— Expand the max-heap with a new @

element whose key is -

— Calls HEAP-INCREASE-KEY to 14) 10)
set the key of the new node to its ~ (8) (7)(9) (3)
correct value and maintainthe @ @WQ@ @
max-heap property

27

Example: MAX-HEAP-INSERT

Insert value 15: Increase the key to 15
- Start by inserting - Call HEAP-INCREASE-KEY on A[11] = 15
The restored heap containing

16
14 19
8) MG G
2 @O &
the newly added element
18 16
@ 19 15 19
B ©®O B (8) W@ G
2 @@ @ 2 WO @

16)
19 10
8 e ©
@ WL @G

28

MAX-HEAP-INSERT

Alg: MAX-HEAP-INSERT(A, key, n)
1. heap-size[A] < n+1
2. A[n+1] « -

3. HEAP-INCREASE-KEY(A, n + 1, key)

Running time: O(lgn)

29

Summary

* We can perform the following operations on

heaps:

— MAX-HEAPIFY O(lgn)

_ BUILD-MAX-HEAP O(n)

— HEAP-SORT O(nign)

— MAX-HEAP-INSERT O(lgn)

— HEAP-EXTRACT-MAX O(Ign)

— HEAP-INCREASE-KEY olgn) | Ag)e(r;f?)e
— HEAP-MAXIMUM o)y

30

Priority Queue Using Linked List

Remove a key: O(1) A

Insert a key: O(n)
> Average: O(n)

Increase key: O(n)

Extract max key: O(1) ~

Problems

Assuming the data in a max-heap are distinct, what are
the possible locations of the second-largest element?

32

Problems

(a) What is the maximum number of nodes In a

max heap of height h?

(b) What is the maximum number of leaves?

(c) What is the maximum number of internal

nodes?

33

Problems

 Demonstrate, step by step, the operation of
Build-Heap on the array

A=[5, 3, 17, 10, 84, 19, 6, 22, 9]

34

Problems

 Let A be a heap of size n. Give the most

efficient algorithm for the following tasks:

(a) Find the sum of all elements

(b) Find the sum of the largest Ign elements

35

