
1 

Divide-and-Conquer 

• Divide the problem into a number of sub-problems 

– Similar sub-problems of smaller size 

• Conquer the sub-problems 

– Solve the sub-problems recursively 

– Sub-problem size small enough  solve the problems in 

straightforward manner 

• Combine the solutions of the sub-problems 

– Obtain the solution for the original problem 



2 

Merge Sort Approach 

• To sort an array A[p . . r]: 

• Divide 

– Divide the n-element sequence to be sorted into two 

subsequences of n/2 elements each 

• Conquer 

– Sort the subsequences recursively using merge sort 

– When the size of the sequences is 1 there is nothing 

more to do 

• Combine 

– Merge the two sorted subsequences 



3 

Merge Sort 

Alg.: MERGE-SORT(A, p, r) 

 if p < r       Check for base case 

    then q ← (p + r)/2     Divide 

  MERGE-SORT(A, p, q)    Conquer 

  MERGE-SORT(A, q + 1, r)    Conquer 

  MERGE(A, p, q, r)     Combine 

 

• Initial call: MERGE-SORT(A, 1, n) 

1 2 3 4 5 6 7 8 

6 2 3 1 7 4 2 5 

p r q 



4 

Example – n Power of 2 

1 2 3 4 5 6 7 8 

q = 4 6 2 3 1 7 4 2 5 

1 2 3 4 

7 4 2 5 

5 6 7 8 

6 2 3 1 

1 2 

2 5 

3 4 

7 4 

5 6 

3 1 

7 8 

6 2 

1 

5 

2 

2 

3 

4 

4 

7 1 

6 

3 

7 

2 

8 

6 

5 

Divide 



5 

Example – n Power of 2 

1 

5 

2 

2 

3 

4 

4 

7 1 

6 

3 

7 

2 

8 

6 

5 

1 2 3 4 5 6 7 8 

7 6 5 4 3 2 2 1 

1 2 3 4 

7 5 4 2 

5 6 7 8 

6 3 2 1 

1 2 

5 2 

3 4 

7 4 

5 6 

3 1 

7 8 

6 2 

Conquer 

and 

Merge 



6 

Example – n Not a Power of 2 

6 2 5 3 7 4 1 6 2 7 4 

1 2 3 4 5 6 7 8 9 10 11 

q = 6 

4 1 6 2 7 4 

1 2 3 4 5 6 

6 2 5 3 7 

7 8 9 10 11 

q = 9 q = 3 

2 7 4 

1 2 3 

4 1 6 

4 5 6 

5 3 7 

7 8 9 

6 2 

10 11 

7 4 

1 2 

2 

3 

1 6 

4 5 

4 

6 

3 7 

7 8 

5 

9 

2 

10 

6 

11 

4 

1 

7 

2 

6 

4 

1 

5 

7 

7 

3 

8 

Divide 



7 

Example – n Not a Power of 2 

7 7 6 6 5 4 4 3 2 2 1 

1 2 3 4 5 6 7 8 9 10 11 

7 6 4 4 2 1 

1 2 3 4 5 6 

7 6 5 3 2 

7 8 9 10 11 

7 4 2 

1 2 3 

6 4 1 

4 5 6 

7 5 3 

7 8 9 

6 2 

10 11 

2 

3 

4 

6 

5 

9 

2 

10 

6 

11 

4 

1 

7 

2 

6 

4 

1 

5 

7 

7 

3 

8 

7 4 

1 2 

6 1 

4 5 

7 3 

7 8 

Conquer 

and 

Merge 



8 

Merging 

• Input: Array A and indices p, q, r such that    

p ≤ q < r 

– Subarrays A[p . . q] and A[q + 1 . . r] are sorted 

• Output: One single sorted subarray A[p . . r] 

1 2 3 4 5 6 7 8 

6 3 2 1 7 5 4 2 

p r q 



9 

Merging 

• Idea for merging: 

– Two piles of sorted cards 

• Choose the smaller of the two top cards 

• Remove it and place it in the output pile 

– Repeat the process until one pile is empty 

– Take the remaining input pile and place it face-down 

onto the output pile 

1 2 3 4 5 6 7 8 

6 3 2 1 7 5 4 2 

p r q 

A1 A[p, q]                       

A2 A[q+1, r]                       

A[p, r]                       



10 

Example: MERGE(A, 9, 12, 16) 

p r q 



11 

Example: MERGE(A, 9, 12, 16) 



12 

Example (cont.) 



13 

Example (cont.) 



14 

Example (cont.) 

Done! 



15 

Merge - Pseudocode 

Alg.: MERGE(A, p, q, r) 

1. Compute n1 and n2 

2. Copy the first n1 elements into                    

L[1 . . n1 + 1] and  the next n2 elements into R[1 . . n2 + 1] 

3. L[n1 + 1] ← ;     R[n2 + 1] ←  

4.  i ← 1;    j ← 1 

5.  for k ← p to r 

6.        do if L[ i ] ≤ R[ j ] 

7.              then A[k] ← L[ i ] 

8.                       i ←i + 1 

9.              else A[k] ← R[ j ] 

10.                      j ← j + 1 

p q 

7 5 4 2 

6 3 2 1 

r q + 1 

L 

R 

 

 

1 2 3 4 5 6 7 8 

6 3 2 1 7 5 4 2 

p r q 

n1 n2 



16 

Running Time of Merge 

(assume last for loop) 

• Initialization (copying into temporary arrays): 

– (n1 + n2) = (n)  

• Adding the elements to the final array: 

 - n iterations, each taking constant time  (n) 

• Total time for Merge: 

– (n) 



17 

Analyzing Divide-and Conquer Algorithms 

• The recurrence is based on the three steps of 

the paradigm: 

– T(n) – running time on a problem of size n 

– Divide the problem into a subproblems, each of size 

n/b: takes D(n) 

– Conquer (solve) the subproblems aT(n/b)  

– Combine the solutions C(n) 

 

    (1)    if n ≤ c  

      T(n) =   aT(n/b) + D(n) + C(n) otherwise 



18 

MERGE-SORT Running Time 

• Divide:  

– compute q as the average of p and r: D(n) = (1) 

• Conquer:  

– recursively solve 2 subproblems, each of size n/2 

 2T (n/2) 

• Combine:  

– MERGE on an n-element subarray takes (n) time 

 C(n) = (n) 

     (1)   if n =1  

      T(n) =   2T(n/2) + (n)  if n > 1 



19 

Solve the Recurrence 

  T(n) =  c   if n = 1 

    2T(n/2) + cn if n > 1 
 

  Use Master’s Theorem: 

   

   Compare n with f(n) = cn 

   Case 2: T(n) = Θ(nlgn) 



20 

Merge Sort - Discussion 

• Running time insensitive of the input 

 

• Advantages: 

– Guaranteed to run in (nlgn) 

 

• Disadvantage 

– Requires extra space N 

 



21 

Sorting Challenge 1 

Problem: Sort a file of huge records with tiny 
keys 

Example application: Reorganize your MP-3 files 

 

Which method to use? 
A. merge sort, guaranteed to run in time NlgN 

B. selection sort 

C. bubble sort 

D. a custom algorithm for huge records/tiny keys 

E. insertion sort 



22 

Sorting Files with Huge Records and 

Small Keys 

• Insertion sort or bubble sort? 

– NO, too many exchanges 

• Selection sort? 

– YES, it takes linear time for exchanges  

• Merge sort or custom method? 

– Probably not: selection sort simpler, does less swaps 



23 

Sorting Challenge 2 

Problem: Sort a huge randomly-ordered file of 
small records 

Application: Process transaction record for a 

phone company 

 

Which sorting method to use? 
A. Bubble sort 

B. Selection sort 

C. Mergesort guaranteed to run in time NlgN 

D. Insertion sort 

 



24 

Sorting Huge, Randomly - Ordered Files 

• Selection sort? 

– NO, always takes quadratic time 

• Bubble sort? 

– NO, quadratic time for randomly-ordered keys 

• Insertion sort? 

– NO, quadratic time for randomly-ordered keys 

• Mergesort? 

– YES, it is designed for this problem 



25 

Sorting Challenge 3 

Problem: sort a file that is already almost in 
order 

Applications: 

– Re-sort a huge database after a few changes 

– Doublecheck that someone else sorted a file 

Which sorting method to use? 
A. Mergesort, guaranteed to run in time NlgN 

B. Selection sort 

C. Bubble sort 

D. A custom algorithm for almost in-order files 

E. Insertion sort 



26 

Sorting Files That are Almost in Order 

• Selection sort? 

– NO, always takes quadratic time 

• Bubble sort? 

– NO, bad for some definitions of “almost in order” 

– Ex: B C D E F G H I J K L M N O P Q R S T U V W X Y Z A 

• Insertion sort? 

– YES, takes linear time for most definitions of “almost 

in order” 

• Mergesort or custom method? 

– Probably not: insertion sort simpler and faster 



27 

Quicksort 

• Sort an array A[p…r] 

• Divide 

– Partition the array A into 2 subarrays A[p..q] and A[q+1..r], such 

that each element of A[p..q] is smaller than or equal to each 

element in A[q+1..r] 

– Need to find index q to partition the array 

 

≤ A[p…q] A[q+1…r] 



28 

Quicksort 

 

 

• Conquer 

– Recursively sort A[p..q] and A[q+1..r] using Quicksort 

• Combine 

– Trivial: the arrays are sorted in place  

– No additional work is required to combine them 

– The entire array is now sorted 

A[p…q] A[q+1…r] ≤ 



29 

 QUICKSORT 

Alg.: QUICKSORT(A, p, r) 

 if p < r 

    then q  PARTITION(A, p, r) 

       QUICKSORT (A, p, q) 

       QUICKSORT (A, q+1, r) 

Recurrence: 

Initially: p=1, r=n 

PARTITION()) T(n) = T(q) + T(n – q) + f(n) 



30 

Partitioning the Array 

• Choosing PARTITION() 

– There are different ways to do this 

– Each has its own advantages/disadvantages 

• Hoare partition (see prob. 7-1, page 159) 

– Select a pivot element x around which to partition 

– Grows two regions 

  A[p…i]  x  

  x  A[j…r] 

A[p…i]  x  x  A[j…r] 

i j 



31 

Example 

7 3 1 4 6 2 3 5 

i j 

7 5 1 4 6 2 3 3 

i j 

7 5 1 4 6 2 3 3 

i j 

7 5 6 4 1 2 3 3 

i j 

7 3 1 4 6 2 3 5 

i j 

A[p…r] 

7 5 6 4 1 2 3 3 

i j 

A[p…q] A[q+1…r] 

pivot x=5 



32 

Example 



33 

Partitioning the Array 

Alg. PARTITION (A, p, r) 

1.  x  A[p] 

2.  i  p – 1 

3.  j  r + 1 

4.  while TRUE 

5.            do repeat j  j – 1 

6.                    until A[j] ≤ x 

7.            do  repeat i  i + 1 

8.                    until A[i] ≥ x 

9.             if i < j 

10.                    then exchange A[i]  A[j] 

11.            else return j 

Running time: (n) 
n = r – p + 1 

7 3 1 4 6 2 3 5 

i j 

A: 

ar ap 

i j=q 

A: 

A[p…q] A[q+1…r] ≤ 

p r 

Each element is 

visited once! 



34 

  Recurrence 

Alg.: QUICKSORT(A, p, r) 

 if p < r 

    then q  PARTITION(A, p, r) 

       QUICKSORT (A, p, q) 

       QUICKSORT (A, q+1, r) 

Recurrence: 

Initially: p=1, r=n 

T(n) = T(q) + T(n – q) + n 



35 

Worst Case Partitioning 

• Worst-case partitioning 

– One region has one element and the other  has n – 1 elements 

– Maximally unbalanced 

• Recurrence: q=1 

T(n) = T(1) + T(n – 1) + n,   

 T(1) = (1) 

T(n) = T(n – 1) + n 

 

     =  

2 2

1

1 ( ) ( ) ( )
n

k

n k n n n


 
      
 


n 

n - 1 

n - 2 

n - 3 

2 

1 

1 

1 

1 

1 

1 

n 

n 

n 
n - 1 

n - 2 

3 

2 

(n2) 

When does the worst case happen? 



36 

Best Case Partitioning 

• Best-case partitioning 

– Partitioning produces two regions of size n/2 

• Recurrence: q=n/2 

T(n) = 2T(n/2) + (n) 

T(n) = (nlgn) (Master theorem) 



37 

Case Between Worst and Best 

 

• 9-to-1 proportional split 

   Q(n) = Q(9n/10) + Q(n/10) + n 



38 

How does partition affect performance? 



39 

How does partition affect performance? 



40 

Performance of Quicksort 

• Average case 

– All permutations of the input numbers are equally likely 

– On a random input array, we will have a mix of well balanced 

and unbalanced splits 

– Good and bad splits are randomly distributed across throughout 

the tree 

Alternate of a good 

and a bad split 
Nearly well 

balanced split 

n 

n - 1 1 

(n – 1)/2 (n – 1)/2 

n 

(n – 1)/2 (n – 1)/2 + 1 

• Running time of Quicksort  when levels alternate 

between good and bad splits is O(nlgn) 

combined partitioning cost: 

2n-1 = (n) 

partitioning cost: 

n = (n) 


