
INSERTION SORT 

 Idea: like sorting a hand of playing cards 

 Start with an empty left hand and the cards facing down 

on the table. 

 Remove one card at a time from the table, and insert it 

into the correct position in the left hand 

 compare it with each of the cards already in the hand, from 

right to left 

 The cards held in the left hand are sorted 

 these cards were originally the top cards of the pile on the 

table 
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INSERTION SORT 
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To insert 12, we need to 

make room for it by moving 

first 36 and then 24. 
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INSERTION SORT 
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5      2      4      6      1      3 

input array  

left sub-array right sub-array 

at each iteration, the array is divided in two sub-arrays: 

sorted unsorted 



INSERTION SORT 
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INSERTION-SORT 
Alg.: INSERTION-SORT(A) 

 for j ← 2 to n 

  do key ← A[ j ] 

        Insert A[ j ] into the sorted sequence A[1 . . j -1] 

       i ← j - 1 

       while i > 0 and A[i] > key 

   do A[i + 1] ← A[i] 

         i ← i – 1 

       A[i + 1] ← key 

 Insertion sort – sorts the elements in place 
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a8 a7 a6 a5 a4 a3 a2 a1 

1 2 3 4 5 6 7 8 

key 



LOOP INVARIANT FOR INSERTION SORT  

Alg.: INSERTION-SORT(A) 

 for j ← 2 to n 

  do key ← A[ j ] 

        Insert A[ j ] into the sorted sequence A[1 . . j -1] 

       i ← j - 1 

       while i > 0 and A[i] > key 

   do A[i + 1] ← A[i] 

         i ← i – 1 

       A[i + 1] ← key 

8 Invariant: at the start of the for loop the elements in A[1 . . j-1] 
are in sorted order 



PROVING LOOP INVARIANTS 
 Proving loop invariants works like induction 

 Initialization (base case):  

 It is true prior to the first iteration of the loop 

 Maintenance (inductive step):  

 If it is true before an iteration of the loop, it remains true before 

the next iteration 

 Termination:  

 When the loop terminates, the invariant gives us a useful property 

that helps show that the algorithm is correct 

 Stop the induction when the loop terminates 
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LOOP INVARIANT FOR INSERTION SORT 
 Initialization:  

 Just before the first iteration, j = 2: 

 the subarray A[1 . . j-1]  = A[1], (the 

element originally in A[1]) – is sorted 
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LOOP INVARIANT FOR INSERTION SORT 
 Maintenance:  

 the while inner loop moves A[j -1], A[j -2], A[j -3], and so on, 

by one position to the right until the proper position for key 

(which has the value that started out in A[j]) is found   

 At that point, the value of key is placed into this position. 
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LOOP INVARIANT FOR INSERTION SORT 
 Termination:  

 The outer for loop ends when j = n + 1  j-1 = n 

 Replace n with j-1 in the loop invariant:  

 the subarray A[1 . . n] consists of the elements originally in A[1 . . n], 
but in sorted order 

 

 

 

 The entire array is sorted!  
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j j - 1 

Invariant: at the start of the for loop the elements in A[1 . . j-1] 
are in sorted order 



ANALYSIS OF INSERTION SORT 
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INSERTION-SORT(A) 

 for j ← 2 to n 

  do key ← A[ j ] 

    Insert A[ j ] into the sorted sequence A[1 . . j -1] 

       i ← j - 1 

       while i > 0 and A[i] > key 

   do A[i + 1] ← A[i] 

         i ← i – 1 

       A[i + 1] ← key 
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tj: # of times the while statement is executed at iteration j  



BEST CASE ANALYSIS 
 The array is already sorted 

 A[i] ≤ key upon the first time the while loop test is run (when i = j 

-1) 

 tj = 1 

 T(n) = c1n + c2(n -1) + c4(n -1) + c5(n -1) + c8(n-1) = (c1 + c2 

+ c4 + c5 + c8)n + (c2 + c4 + c5 + c8) 

 = an + b = (n)  
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“while i > 0 and A[i] > key” 
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WORST CASE ANALYSIS 

 The array is in reverse sorted order 

 Always A[i] > key in while loop test 

 Have to compare key with all elements to the left of the j-th 

position  compare with j-1 elements  tj = j  

 
 

 

      

     a quadratic function of n 
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“while i > 0 and A[i] > key” 
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COMPARISONS AND EXCHANGES IN 

INSERTION SORT 

INSERTION-SORT(A) 

 for j ← 2 to n 

  do key ← A[ j ] 

    Insert A[ j ] into the sorted sequence A[1 . . j -1] 

       i ← j - 1 

       while i > 0 and A[i] > key 

   do A[i + 1] ← A[i] 

         i ← i – 1 

       A[i + 1] ← key 
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cost  times 
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INSERTION SORT - SUMMARY 

 Advantages 

 Good running time for “almost sorted” arrays (n) 

 Disadvantages 

 (n2) running time in worst and average case 

  n2/2 comparisons and exchanges 
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BUBBLE SORT (EX. 2-2, PAGE 38) 

 Idea: 

 Repeatedly pass through the array 

 Swaps adjacent elements that are out of order 

 

 

 

 

 Easier to implement, but slower than Insertion sort 
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1 3 2 9 6 4 8 
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EXAMPLE 
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1 3 2 9 6 4 8 

i = 1 j 

3 1 2 9 6 4 8 

i = 1 j 

3 2 1 9 6 4 8 

i = 1 j 

3 2 9 1 6 4 8 

i = 1 j 

3 2 9 6 1 4 8 

i = 1 j 

3 2 9 6 4 1 8 

i = 1 j 

3 2 9 6 4 8 1 

i = 1 j 

3 2 9 6 4 8 1 

i = 2 j 

3 9 6 4 8 2 1 

i = 3 j 

9 6 4 8 3 2 1 

i = 4 j 

9 6 8 4 3 2 1 

i = 5 j 

9 8 6 4 3 2 1 

i = 6 j 

9 8 6 4 3 2 1 

i = 7 

j 



BUBBLE SORT 

Alg.: BUBBLESORT(A) 

 for i  1 to length[A] 

  do for j  length[A] downto i + 1 

            do if A[j] < A[j -1] 

           then exchange A[j]  A[j-1]
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BUBBLE-SORT RUNNING TIME 

Thus,T(n) = (n2)
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Alg.: BUBBLESORT(A) 

 for i  1 to length[A] 

  do for j  length[A] downto i + 1 

            do if A[j] < A[j -1] 

           then exchange A[j]  A[j-1] 
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SELECTION SORT (EX. 2.2-2, PAGE 27) 
 Idea: 

 Find the smallest element in the array 

 Exchange it with the element in the first position 

 Find the second smallest element and exchange it with the 

element in the second position 

 Continue until the array is sorted 

 Disadvantage: 

 Running time depends only slightly on the amount of order in 

the file 
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EXAMPLE 
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1 3 2 9 6 4 8 

8 3 2 9 6 4 1 

8 3 4 9 6 2 1 

8 6 4 9 3 2 1 

8 9 6 4 3 2 1 

8 6 9 4 3 2 1 

9 8 6 4 3 2 1 

9 8 6 4 3 2 1 



SELECTION SORT 

Alg.: SELECTION-SORT(A) 

 n ← length[A] 

 for j ← 1 to n - 1 

  do smallest ← j 

        for i ← j + 1 to n 

      do if A[i] < A[smallest] 

       then smallest ← i 

        exchange A[j] ↔ A[smallest] 
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ANALYSIS OF SELECTION SORT 
Alg.: SELECTION-SORT(A) 

 n ← length[A] 

   for j ← 1 to n - 1 

  do smallest ← j 

        for i ← j + 1 to n 

      do if A[i] < A[smallest] 

       then smallest ← i 

        exchange A[j] ↔ A[smallest] 
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