
INSERTION SORT

 Idea: like sorting a hand of playing cards

 Start with an empty left hand and the cards facing down

on the table.

 Remove one card at a time from the table, and insert it

into the correct position in the left hand

 compare it with each of the cards already in the hand, from

right to left

 The cards held in the left hand are sorted

 these cards were originally the top cards of the pile on the

table

1

INSERTION SORT

2

To insert 12, we need to

make room for it by moving

first 36 and then 24.

INSERTION SORT

3

INSERTION SORT

4

INSERTION SORT

5

5 2 4 6 1 3

input array

left sub-array right sub-array

at each iteration, the array is divided in two sub-arrays:

sorted unsorted

INSERTION SORT

6

INSERTION-SORT
Alg.: INSERTION-SORT(A)

 for j ← 2 to n

 do key ← A[j]

 Insert A[j] into the sorted sequence A[1 . . j -1]

 i ← j - 1

 while i > 0 and A[i] > key

 do A[i + 1] ← A[i]

 i ← i – 1

 A[i + 1] ← key

 Insertion sort – sorts the elements in place

7

a8 a7 a6 a5 a4 a3 a2 a1

1 2 3 4 5 6 7 8

key

LOOP INVARIANT FOR INSERTION SORT

Alg.: INSERTION-SORT(A)

 for j ← 2 to n

 do key ← A[j]

 Insert A[j] into the sorted sequence A[1 . . j -1]

 i ← j - 1

 while i > 0 and A[i] > key

 do A[i + 1] ← A[i]

 i ← i – 1

 A[i + 1] ← key

8 Invariant: at the start of the for loop the elements in A[1 . . j-1]
are in sorted order

PROVING LOOP INVARIANTS
 Proving loop invariants works like induction

 Initialization (base case):

 It is true prior to the first iteration of the loop

 Maintenance (inductive step):

 If it is true before an iteration of the loop, it remains true before

the next iteration

 Termination:

 When the loop terminates, the invariant gives us a useful property

that helps show that the algorithm is correct

 Stop the induction when the loop terminates

9

LOOP INVARIANT FOR INSERTION SORT
 Initialization:

 Just before the first iteration, j = 2:

 the subarray A[1 . . j-1] = A[1], (the

element originally in A[1]) – is sorted

10

LOOP INVARIANT FOR INSERTION SORT
 Maintenance:

 the while inner loop moves A[j -1], A[j -2], A[j -3], and so on,

by one position to the right until the proper position for key

(which has the value that started out in A[j]) is found

 At that point, the value of key is placed into this position.

11

LOOP INVARIANT FOR INSERTION SORT
 Termination:

 The outer for loop ends when j = n + 1  j-1 = n

 Replace n with j-1 in the loop invariant:

 the subarray A[1 . . n] consists of the elements originally in A[1 . . n],
but in sorted order

 The entire array is sorted!

12

j j - 1

Invariant: at the start of the for loop the elements in A[1 . . j-1]
are in sorted order

ANALYSIS OF INSERTION SORT

13

INSERTION-SORT(A)

 for j ← 2 to n

 do key ← A[j]

 Insert A[j] into the sorted sequence A[1 . . j -1]

 i ← j - 1

 while i > 0 and A[i] > key

 do A[i + 1] ← A[i]

 i ← i – 1

 A[i + 1] ← key

cost times

 c1 n

 c2 n-1

 0 n-1

 c4 n-1

 c5

 c6

 c7

 c8 n-1

 

n

j jt
2

 


n

j jt
2

)1(

 


n

j jt
2

)1(

   )1(11)1()1()(8

2

7

2

6

2

5421  


nctctctcncncncnT
n

j

j

n

j

j

n

j

j

tj: # of times the while statement is executed at iteration j

BEST CASE ANALYSIS
 The array is already sorted

 A[i] ≤ key upon the first time the while loop test is run (when i = j

-1)

 tj = 1

 T(n) = c1n + c2(n -1) + c4(n -1) + c5(n -1) + c8(n-1) = (c1 + c2

+ c4 + c5 + c8)n + (c2 + c4 + c5 + c8)

 = an + b = (n)

14

“while i > 0 and A[i] > key”

   )1(11)1()1()(8

2

7

2

6

2

5421  


nctctctcncncncnT
n

j

j

n

j

j

n

j

j

WORST CASE ANALYSIS

 The array is in reverse sorted order

 Always A[i] > key in while loop test

 Have to compare key with all elements to the left of the j-th

position  compare with j-1 elements  tj = j

 a quadratic function of n

 T(n) = (n2) order of growth in n2

1 2 2

(1) (1) (1)
1 (1)

2 2 2

n n n

j j j

n n n n n n
j j j

  

  
        

)1(
2

)1(

2

)1(
1

2

)1(
)1()1()(8765421 

















 nc

nn
c

nn
c

nn
cncncncnT

15

cbnan  2

“while i > 0 and A[i] > key”

   )1(11)1()1()(8

2

7

2

6

2

5421  


nctctctcncncncnT
n

j

j

n

j

j

n

j

j

using we have:

COMPARISONS AND EXCHANGES IN

INSERTION SORT

INSERTION-SORT(A)

 for j ← 2 to n

 do key ← A[j]

 Insert A[j] into the sorted sequence A[1 . . j -1]

 i ← j - 1

 while i > 0 and A[i] > key

 do A[i + 1] ← A[i]

 i ← i – 1

 A[i + 1] ← key
16

cost times

 c1 n

 c2 n-1

 0 n-1

 c4 n-1

 c5

 c6

 c7

 c8 n-1

 

n

j jt
2

 


n

j jt
2

)1(

 


n

j jt
2

)1(

 n2/2 comparisons

 n2/2 exchanges

INSERTION SORT - SUMMARY

 Advantages

 Good running time for “almost sorted” arrays (n)

 Disadvantages

 (n2) running time in worst and average case

  n2/2 comparisons and exchanges

17

BUBBLE SORT (EX. 2-2, PAGE 38)

 Idea:

 Repeatedly pass through the array

 Swaps adjacent elements that are out of order

 Easier to implement, but slower than Insertion sort

18

1 2 3 n

i

1 3 2 9 6 4 8

j

EXAMPLE

19

1 3 2 9 6 4 8

i = 1 j

3 1 2 9 6 4 8

i = 1 j

3 2 1 9 6 4 8

i = 1 j

3 2 9 1 6 4 8

i = 1 j

3 2 9 6 1 4 8

i = 1 j

3 2 9 6 4 1 8

i = 1 j

3 2 9 6 4 8 1

i = 1 j

3 2 9 6 4 8 1

i = 2 j

3 9 6 4 8 2 1

i = 3 j

9 6 4 8 3 2 1

i = 4 j

9 6 8 4 3 2 1

i = 5 j

9 8 6 4 3 2 1

i = 6 j

9 8 6 4 3 2 1

i = 7

j

BUBBLE SORT

Alg.: BUBBLESORT(A)

 for i  1 to length[A]

 do for j  length[A] downto i + 1

 do if A[j] < A[j -1]

 then exchange A[j]  A[j-1]

20

1 3 2 9 6 4 8

i = 1 j

i

BUBBLE-SORT RUNNING TIME

Thus,T(n) = (n2)

2
2

1 1 1

(1)
()

2 2 2

n n n

i i i

n n n n
where n i n i n

  


        

21

Alg.: BUBBLESORT(A)

 for i  1 to length[A]

 do for j  length[A] downto i + 1

 do if A[j] < A[j -1]

 then exchange A[j]  A[j-1]

T(n) = c1(n+1) + 


n

i

in
1

)1(c2 c3 



n

i

in
1

)(c4 



n

i

in
1

)(

= (n) + (c2 + c2 + c4) 



n

i

in
1

)(

Comparisons:  n2/2

Exchanges:  n2/2

c1

c2

c3

c4

SELECTION SORT (EX. 2.2-2, PAGE 27)
 Idea:

 Find the smallest element in the array

 Exchange it with the element in the first position

 Find the second smallest element and exchange it with the

element in the second position

 Continue until the array is sorted

 Disadvantage:

 Running time depends only slightly on the amount of order in

the file

22

EXAMPLE

23

1 3 2 9 6 4 8

8 3 2 9 6 4 1

8 3 4 9 6 2 1

8 6 4 9 3 2 1

8 9 6 4 3 2 1

8 6 9 4 3 2 1

9 8 6 4 3 2 1

9 8 6 4 3 2 1

SELECTION SORT

Alg.: SELECTION-SORT(A)

 n ← length[A]

 for j ← 1 to n - 1

 do smallest ← j

 for i ← j + 1 to n

 do if A[i] < A[smallest]

 then smallest ← i

 exchange A[j] ↔ A[smallest]

24

1 3 2 9 6 4 8

ANALYSIS OF SELECTION SORT
Alg.: SELECTION-SORT(A)

 n ← length[A]

 for j ← 1 to n - 1

 do smallest ← j

 for i ← j + 1 to n

 do if A[i] < A[smallest]

 then smallest ← i

 exchange A[j] ↔ A[smallest]

25

n2/2
comparisons

cost times

 c1 1

 c2 n

 c3 n-1

 c4

 c5

 c6

 c7 n-1







1

1
)1(

n

j
jn







1

1
)(

n

j
jn







1

1
)(

n

j
jn

n
exchanges

   
1 1 1

2

1 2 3 4 5 6 7

1 1 2

() (1) (1) (1) ()
n n n

j j j

T n c c n c n c n j c n j c n j c n n
  

  

                

