
RADIXSORT

 Radix = “The base of a number system” (Webster’s

dictionary)

 History: used in 1890 U.S. census by Hollerith*

 Idea: BinSort on each digit, bottom up.

1

RADIXSORT – MAGIC! IT WORKS.

 Input list:
126, 328, 636, 341, 416, 131, 328

 BinSort on lower digit:
341, 131, 126, 636, 416, 328, 328

 BinSort result on next-higher digit:
416, 126, 328, 328, 131, 636, 341

 BinSort that result on highest digit:
126, 131, 328, 328, 341, 416, 636

2

NOT MAGIC. IT PROVABLY WORKS.

 Keys

 N-digit numbers

 base B

 Claim: after ith BinSort, least significant i digits are

sorted.

 e.g. B=10, i=3, keys are 1776 and 8234. 8234 comes

before 1776 for last 3 digits.

3

INDUCTION TO THE RESCUE!!!

 base case:

 i=0. 0 digits are sorted (that wasn’t hard!)

4

INDUCTION IS RESCUING US…

 Induction step

 assume for i, prove for i+1.

 consider two numbers: X, Y. Say Xi is ith digit of X (from
the right)
 Xi+1 < Yi+1 then i+1th BinSort will put them in order

 Xi+1 > Yi+1 , same thing

 Xi+1 = Yi+1 , order depends on last i digits. Induction hypothesis
says already sorted for these digits. (Careful about ensuring that
your BinSort preserves order aka “stable”…)

5

PALEONTOLOGY FACT

 Early humans had to survive without induction.

6

RUNNING TIME OF RADIXSORT

How many passes?

How much work per pass?

Total time?

Conclusion
 Not truly linear if K is large.

 In practice
 RadixSort only good for large number of items,

relatively small keys

 Hard on the cache, vs. MergeSort/QuickSort
7

WHAT DATA TYPES CAN YOU RADIXSORT?

 Any type T that can be BinSorted

 Any type T that can be broken into parts A and B,

 You can reconstruct T from A and B

 A can be RadixSorted

 B can be RadixSorted

 A is always more significant than B, in ordering

8

EXAMPLE:

 1-digit numbers can be BinSorted

 2 to 5-digit numbers can be BinSorted without using
too much memory

 6-digit numbers, broken up into A=first 3 digits,
B=last 3 digits.

 A and B can reconstruct original 6-digits

 A and B each RadixSortable as above

 A more significant than B

9

RADIXSORTING STRINGS

 1 Character can be BinSorted

 Break strings into characters

 Need to know length of biggest string (or calculate

this on the fly).

10

RADIXSORTING STRINGS EXAMPLE

11

5th

pass

4th

pass

3rd

pass

2nd

pass

1st

pass

String 1 z i p p y

String 2 z a p

String 3 a n t s

String 4 f l a p s

NULLs are

just like fake

characters

RADIXSORTING STRINGS RUNNING TIME

 N is number of strings

 L is length of longest string

 RadixSort takes O(N*L)

12

RADIXSORTING IEEE FLOATS/DOUBLES

 You can RadixSort real numbers, in most

representations

 We do IEEE floats/doubles, which are used in

C/C++.

 Some people say you can’t RadixSort reals. In

practice (like IEEE reals) you can.

13

ANATOMY OF A REAL NUMBER

14

-1.3892*1024

+1.507*10-17

Sign

(positive or

negative)

Significand (a.k.a.

mantissa)

Exponent

IEEE FLOATS IN BINARY*

 Sign: 1 bit

 Significand: always 1.fraction. fraction uses 23 bits

 Biased exponent: 8 bits.

 Bias: represent –127 to +127 by adding 127 (so range is 0-

254)

15

-1.0110100111*21011

+1.101101001*2-1

* okay, simplified to focus on the essential ideas.

OBSERVATIONS

 significand always starts with 1

  only one way to represent any number

 Exponent always more significant than significand

 Sign is most significant, but in a weird way

16

PSEUDOCODE

17

procedure RadixSortReals (Array[1..N])

RadixSort Significands in Array as unsigned ints

RadixSort biased exponents in Array as u-ints

Sweep thru Array,

 put negative #’s separate from positive #’s.

Flip order of negative #’s, & put them before

 the positive #’s.

Done.

