RADIXSORT

Radix = “The base of a number system” (Webster’s
dictionary)

History: used in 1890 U.S. census by Hollerith®
ldea: BinSort on each digit, bottom up.

RADIXSORT — MAGIC! IT WORKS.

Input list:
126, 328, 636, 341, 416, 131, 328

BinSort on lower digit:

341,131, 126, 636, 416, 328, 32
BinSort result on next-higher digit:
416, 126, 328, 328, 131, 636, 341

BinSort that result on highest digit:
26, 131, 328, 328, 341, 416, 636

NOT MAGIC. IT PROVABLY WORKS.

Keys
-digit numbers
base

Claim: after it" BinSort, least significant | digits are
sorted.

e.g. B=10, i=3, keys are 1776 and 8234. 8 comes
before 1 for last 3 digits.

INDUCTION TO THE RESCUE!!!

base case:
=0. 0 digits are sorted (that wasn’t hard!)

INDUCTION IS RESCUING US...

Induction step
assume for |, prove for

consider two numbers: X, Y. Say X is i digit of X (from
the right)

< then i+1t% BinSort will put them in order

> , same thing

= , order depends on last | digits. Induction hypothesis
says already sorted for these digits. (Careful about ensuring that
your BinSort preserves order aka “stable”...)

PALEONTOLOGY FACT

Early humans had to survive without induction.

RUNNING TIME OF RADIXSORT

How many passes?
How much work per pass?
Total time?

Conclusion
Not truly linear if K is large.

In practice

RadixSort only good for large number of items,
relatively small keys

Hard on the cache, vs. MergeSort/QuickSort

WHAT DATA TYPES CAN YOU RADIXSORT?

Any type T that can be BinSorted

Any type T that can be broken into parts A and B,
You can reconstruct T from A and
can be RadixSorted
can be RadixSorted
Is always more significant than B, in ordering

EXAMPLE:

1-digit numbers can be BinSorted

2 to 5-digit numbers can be BinSorted without using
too much memory
6-digit numbers, broken up into A=first 3 digits,
B=last 3 digits.

A and B can reconstruct original 6-digits

A and B each RadixSortable as above

A more significant than B

RADIXSORTING STRINGS

1 Character can be BinSorted
Break strings into characters

Need to know length of biggest string (or calculate
this on the fly).

RADIXSORTING STRINGS EXAMPLE

NULLsare
just like fake

characters

St [gth |[3rd | ond
pass |pass |pass |pass
Stringl| Z i D | p
String2| Z a D
String3| a N { S
String4 | f | a | p

RADIXSORTING STRINGS RUNNING TIME

N Is number of strings
L 1s length of longest string
RadixSort takes O(IN*L)

RADIXSORTING |IEEE FLOATS/DOUBLES

You can RadixSort real numbers, in most
representations

We do IEEE floats/doubles, which are used in
C/C++.

Some people say you can’t RadixSort reals. In
practice (like IEEE reals) you can.

ANATOMY OF A REAL NUMBER

Sign
(positive or
negative)

-1.3892*10%
+1.507*10

Significand (a.k.a.
mantissa)

Exponent

IEEE FLOATS IN BINARY"

1.0110100111*2101
1.101101001*2+

. 1 bit
Significand: always 1.fraction. fraction uses 23 bits

Biased exponent: 8 bits.

Bias: represent —127 to +127 by adding 127 (so range is O-
254)

* okay, simplified to focus on the essential ideas.

OBSERVATIONS

significand always starts with 1
-> only one way to represent any number

Exponent always more significant than significand
Sign is most significant, but in a weird way

PSEUDOCODE

procedure RadixSortReals (Array[l..N])

RadixSort Significands in Array as unsigned 1nts
RadixSort bilased exponents 1n Array as u-ints

Sweep thru Array,

put negative #’s separate from positive #’s.

Flip order of negative #’s, & put them before
the positive #’s.

Done.

