
Floyd-Warshall Algorithm 



FLOYD-WARSHALL ALGORITHM 
 A weighted, directed graph is a collection vertices 

connected by weighted edges (where the weight is 
some real number). 

 One of the most common examples of a graph in the real 
world is a road map.  
 Each location is a vertex and each road connecting locations is an 

edge.  

 We can think of the distance traveled on a road from one location to 
another as the weight of that edge. 
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STORING A WEIGHTED, DIRECTED GRAPH 
 Adjacency Matrix: 

 Let D be an edge-weighted graph in adjacency-matrix 
form 

• D(i,j) is the weight of edge (i, j), or  if there is no such 
edge. 

• Update matrix D, with the shortest path through 
immediate vertices. 
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FLOYD-WARSHALL ALGORITHM 

 Given a weighted graph, we want to know the 

shortest path from one vertex in the graph to 

another.   

 The Floyd-Warshall algorithm determines the shortest 

path between all pairs of vertices in a graph. 

 

 What is the difference between Floyd-Warshall and 

Dijkstra’s?? 



FLOYD-WARSHALL ALGORITHM 
If  V is the number of vertices, Dijkstra’s runs in (V2)  

  We could just call Dijkstra |V| times, passing a different 

source vertex each time. 

  (V  V2) = (V3) 

 (Which is the same runtime as the Floyd-Warshall 

 Algorithm) 

 

  BUT, Dijkstra’s doesn’t work with negative-weight 

edges. 

 



FLOYD WARSHALL ALGORITHM 
 Let’s go over the premise of how Floyd-Warshall 

algorithm works… 

 Let the vertices in a graph be numbered from 1 … n. 

 Consider the subset {1,2,…, k} of these n vertices. 

 

 Imagine finding the shortest path from vertex i to vertex j that 
uses vertices in the set {1,2,…,k} only.   

 

 There are two situations: 
1) k is an intermediate vertex on the shortest path. 

2) k is not an intermediate vertex on the shortest path. 
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FLOYD WARSHALL ALGORITHM - EXAMPLE 

Consider Vertex 3: 

   Nothing changes. 

Consider Vertex 2: 

  D(1,3) = D(1,2) + D(2,3) 

Consider Vertex 1: 

  D(3,2) = D(3,1) + D(1,2) 

Original weights. 



FLOYD WARSHALL ALGORITHM 

 Looking at this example, we can come up with the following 
algorithm: 
 Let D store the matrix with the initial graph edge information 

initially, and update D with the calculated shortest paths. 

 
For k=1 to n { 

 For i=1 to n { 

     For j=1 to n 

   D[i,j] = min(D[i,j],D[i,k]+D[k,j]) 

 } 

} 

 

 The final D matrix will store all the shortest paths. 

 



FLOYD WARSHALL ALGORITHM 

 Example on the board… 



FLOYD WARSHALL – PATH RECONSTRUCTION 
 The path matrix will store the last vertex visited on the path from i to j.  

 So path[i][j] = k means that in the shortest path from vertex i to vertex j, the LAST 
vertex on that path before you get to vertex j is k.  

 

 Based on this definition, we must initialize the path matrix as follows: 
 path[i][j] = i if  i!=j and there exists an edge from i to j 

               = NIL otherwise 

 

 The reasoning is as follows: 
 If you want to reconstruct the path at this point of the algorithm when you aren’t 

allowed to visit intermediate vertices, the previous vertex visited MUST be the 
source vertex i.  

 NIL is used to indicate the absence of a path. 

 



FLOYD WARSHALL – PATH RECONSTRUCTION 
 Before you run Floyd’s, you initialize your distance matrix D and 

path matrix P to indicate the use of no immediate vertices.  
 (Thus, you are only allowed to traverse direct paths between vertices.) 

 

 Then, at each step of Floyd’s, you essentially find out whether or not 
using vertex k will improve an estimate between the distances 
between vertex i and vertex j. 

 

 If it does improve the estimate here’s what you need to record: 

 
1) record the new shortest path weight between i and j 

2) record the fact that the shortest path between i and j goes through k 

 



FLOYD WARSHALL – PATH RECONSTRUCTION 
 If it does improve the estimate here’s what you need to record: 

1) record the new shortest path weight between i and j 
 We don’t need to change our path and we do not update the path matrix 

2) record the fact that the shortest path between i and j goes through k 
 We want to store the last vertex from the shortest path from vertex k to 

vertex j. This will NOT necessarily be k, but rather, it will be path[k][j]. 

 

This gives us the following update to our algorithm: 

if (D[i][k]+D[k][j] < D[i][j]) { // Update is necessary to use k as intermediate 
vertex 

     D[i][j] = D[i][k]+D[k][j]; 

     path[i][j] = path[k][j]; 

} 
 

 



PATH RECONSTRUCTION 

 Example on the board… 



PATH RECONSTRUCTION 
 Now, the once this path matrix is computed, we have all the information necessary to 

reconstruct the path.  
 Consider the following path matrix (indexed from 1 to 5 instead of 0 to 4): 

 

 

 

 

 

 Reconstruct the path from vertex1 to vertex 2: 
 First look at path[1][2] = 3.   This signifies that on the path from 1 to 2, 3 is the last vertex visited 

before 2.  
 Thus, the path is now, 1…3->2.  

 Now, look at path[1][3], this stores a 4. Thus, we find the last vertex visited on the path from 1 to 3 is 
4.  

 So, our path now looks like 1…4->3->2. So, we must now look at path[1][4]. This stores a 5,  

 thus, we know our path is 1…5->4->3->2. When we finally look at path[1][5], we find 1,  

 which means our path really is 1->5->4->3->2. 

 

NIL 3 4 5 1 

4 NIL 4 2 1 

4 3 NIL 2 1 

4 3 4 NIL 1 

4 3 4 5 NIL 



TRANSITIVE CLOSURE 

 Computing a transitive closure of a graph gives you complete 
information about which vertices are connected to which other 
vertices. 

 

 Input: 
 Un-weighted graph G: W[i][j] = 1, if (i,j)E, W[i][j] = 0 otherwise. 

 Output: 
 T[i][j] = 1, if there is a path from i to j in G, T[i][j] = 0 otherwise. 

 Algorithm: 
 Just run Floyd-Warshall with weights 1, and make T[i][j] = 1, whenever 

D[i][j] <  

 More efficient: use only Boolean operators   

 



TRANSITIVE CLOSURE 

 This is the SAME as the other Floyd-Warshall Algorithm, except for 
when we find a non-infinity estimate, we simply add an edge to the 
transitive closure graph.  

 

 Every round we build off the previous paths reached.  
 After iterating through all vertices being intermediate vertices, we have tried to 

connect all pairs of vertices i and j through all intermediate vertices k. 

 

Transitive-Closure(W[1..n][1..n])  

01 T   W    // T(0) 

02 for k  1 to n do // compute T(k) 

03    for i 1 to n do 

04       for j 1 to n do 

05          T[i][j]   T[i][j]   (T[i][k]  T[k][j])  

06 return T 



TRANSITIVE CLOSURE 

 Example on the board… 
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