
Floyd-Warshall Algorithm

FLOYD-WARSHALL ALGORITHM
 A weighted, directed graph is a collection vertices

connected by weighted edges (where the weight is
some real number).

 One of the most common examples of a graph in the real
world is a road map.
 Each location is a vertex and each road connecting locations is an

edge.

 We can think of the distance traveled on a road from one location to
another as the weight of that edge.

Tamp

a

Orland

o

Jacksonvil

le

3.5 4

1.5

1.7

2.5

Tampa Orlando Jaxville

Tampa 0 1.7 3.5

Orlando 1.5 0 ∞

Jax 4 2.5 0

STORING A WEIGHTED, DIRECTED GRAPH
 Adjacency Matrix:

 Let D be an edge-weighted graph in adjacency-matrix
form

• D(i,j) is the weight of edge (i, j), or  if there is no such
edge.

• Update matrix D, with the shortest path through
immediate vertices.

0 1 2 3

0 0 6 5 ∞

1 ∞ 0 4 3

2 ∞ ∞ 0 2

3 ∞ ∞ ∞ 0

2

1

3 0

6

5

4

3

2
D =

FLOYD-WARSHALL ALGORITHM

 Given a weighted graph, we want to know the

shortest path from one vertex in the graph to

another.

 The Floyd-Warshall algorithm determines the shortest

path between all pairs of vertices in a graph.

 What is the difference between Floyd-Warshall and

Dijkstra’s??

FLOYD-WARSHALL ALGORITHM
If V is the number of vertices, Dijkstra’s runs in (V2)

 We could just call Dijkstra |V| times, passing a different

source vertex each time.

 (V  V2) = (V3)

 (Which is the same runtime as the Floyd-Warshall

 Algorithm)

 BUT, Dijkstra’s doesn’t work with negative-weight

edges.

FLOYD WARSHALL ALGORITHM
 Let’s go over the premise of how Floyd-Warshall

algorithm works…

 Let the vertices in a graph be numbered from 1 … n.

 Consider the subset {1,2,…, k} of these n vertices.

 Imagine finding the shortest path from vertex i to vertex j that
uses vertices in the set {1,2,…,k} only.

 There are two situations:
1) k is an intermediate vertex on the shortest path.

2) k is not an intermediate vertex on the shortest path.

j

k

i

FLOYD WARSHALL ALGORITHM - EXAMPLE

Consider Vertex 3:

 Nothing changes.

Consider Vertex 2:

 D(1,3) = D(1,2) + D(2,3)

Consider Vertex 1:

 D(3,2) = D(3,1) + D(1,2)

Original weights.

FLOYD WARSHALL ALGORITHM

 Looking at this example, we can come up with the following
algorithm:
 Let D store the matrix with the initial graph edge information

initially, and update D with the calculated shortest paths.

For k=1 to n {

 For i=1 to n {

 For j=1 to n

 D[i,j] = min(D[i,j],D[i,k]+D[k,j])

 }

}

 The final D matrix will store all the shortest paths.

FLOYD WARSHALL ALGORITHM

 Example on the board…

FLOYD WARSHALL – PATH RECONSTRUCTION
 The path matrix will store the last vertex visited on the path from i to j.

 So path[i][j] = k means that in the shortest path from vertex i to vertex j, the LAST
vertex on that path before you get to vertex j is k.

 Based on this definition, we must initialize the path matrix as follows:
 path[i][j] = i if i!=j and there exists an edge from i to j

 = NIL otherwise

 The reasoning is as follows:
 If you want to reconstruct the path at this point of the algorithm when you aren’t

allowed to visit intermediate vertices, the previous vertex visited MUST be the
source vertex i.

 NIL is used to indicate the absence of a path.

FLOYD WARSHALL – PATH RECONSTRUCTION
 Before you run Floyd’s, you initialize your distance matrix D and

path matrix P to indicate the use of no immediate vertices.
 (Thus, you are only allowed to traverse direct paths between vertices.)

 Then, at each step of Floyd’s, you essentially find out whether or not
using vertex k will improve an estimate between the distances
between vertex i and vertex j.

 If it does improve the estimate here’s what you need to record:

1) record the new shortest path weight between i and j

2) record the fact that the shortest path between i and j goes through k

FLOYD WARSHALL – PATH RECONSTRUCTION
 If it does improve the estimate here’s what you need to record:

1) record the new shortest path weight between i and j
 We don’t need to change our path and we do not update the path matrix

2) record the fact that the shortest path between i and j goes through k
 We want to store the last vertex from the shortest path from vertex k to

vertex j. This will NOT necessarily be k, but rather, it will be path[k][j].

This gives us the following update to our algorithm:

if (D[i][k]+D[k][j] < D[i][j]) { // Update is necessary to use k as intermediate
vertex

 D[i][j] = D[i][k]+D[k][j];

 path[i][j] = path[k][j];

}

PATH RECONSTRUCTION

 Example on the board…

PATH RECONSTRUCTION
 Now, the once this path matrix is computed, we have all the information necessary to

reconstruct the path.
 Consider the following path matrix (indexed from 1 to 5 instead of 0 to 4):

 Reconstruct the path from vertex1 to vertex 2:
 First look at path[1][2] = 3. This signifies that on the path from 1 to 2, 3 is the last vertex visited

before 2.
 Thus, the path is now, 1…3->2.

 Now, look at path[1][3], this stores a 4. Thus, we find the last vertex visited on the path from 1 to 3 is
4.

 So, our path now looks like 1…4->3->2. So, we must now look at path[1][4]. This stores a 5,

 thus, we know our path is 1…5->4->3->2. When we finally look at path[1][5], we find 1,

 which means our path really is 1->5->4->3->2.

NIL 3 4 5 1

4 NIL 4 2 1

4 3 NIL 2 1

4 3 4 NIL 1

4 3 4 5 NIL

TRANSITIVE CLOSURE

 Computing a transitive closure of a graph gives you complete
information about which vertices are connected to which other
vertices.

 Input:
 Un-weighted graph G: W[i][j] = 1, if (i,j)E, W[i][j] = 0 otherwise.

 Output:
 T[i][j] = 1, if there is a path from i to j in G, T[i][j] = 0 otherwise.

 Algorithm:
 Just run Floyd-Warshall with weights 1, and make T[i][j] = 1, whenever

D[i][j] < 

 More efficient: use only Boolean operators

TRANSITIVE CLOSURE

 This is the SAME as the other Floyd-Warshall Algorithm, except for
when we find a non-infinity estimate, we simply add an edge to the
transitive closure graph.

 Every round we build off the previous paths reached.
 After iterating through all vertices being intermediate vertices, we have tried to

connect all pairs of vertices i and j through all intermediate vertices k.

Transitive-Closure(W[1..n][1..n])

01 T  W // T(0)

02 for k  1 to n do // compute T(k)

03 for i 1 to n do

04 for j 1 to n do

05 T[i][j]  T[i][j]  (T[i][k]  T[k][j])

06 return T

TRANSITIVE CLOSURE

 Example on the board…

REFERENCES

 Slides adapted from Arup Guha’s Computer

Science II Lecture notes:

http://www.cs.ucf.edu/~dmarino/ucf/cop3503/lecture

s/

 Additional material from the textbook:

Data Structures and Algorithm Analysis in Java (Second

Edition) by Mark Allen Weiss

 Additional images:

www.wikipedia.com

xkcd.com

http://www.cs.ucf.edu/~dmarino/ucf/cop3503/lectures/
http://www.cs.ucf.edu/~dmarino/ucf/cop3503/lectures/
http://www.wikipedia.com/
http://xkcd.com/

