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FLOYD-WARSHALL ALGORITHM

A weighted, directed graph is a collection vertices
connected by weighted edges (where the weight is

some real number).
One of the most common examples of a graph in the real

world is a road map.
Each location is a vertex and each road connecting locations is an
edge.
We can think of the distance traveled on a road from one location to
another as the weight of that edge.
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STORING A WEIGHTED, DIRECTED GRAPH
Adjacency Matrix:

Let D be an edge-weighted graph in adjacency-matrix
form

Déi,j) IS the weight of edge (i, |), or « If there Iis no such
edge.

Update matrix D, with the shortest path through
Immediate vertices.
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FLOYD-WARSHALL ALGORITHM

Given a weighted graph, we want to know the

shortest path from one vertex in the graph to
another.

The Floyd-Warshall algorithm determines the shortest
path between all pairs of vertices in a graph.

What is the difference between Floyd-Warshall and
Dijkstra’s??



FLOYD-WARSHALL ALGORITHM

If V is the number of vertices, Dijkstra’s runs in ©(V?)

We could just call Dijkstra |V| times, passing a different
source vertex each time.

OV x V) = O(V3)
(Which is the same runtime as the Floyd-Warshall
Algorithm)

BUT, Dijkstra’s doesn’t work with negative-weight
edges.



FLOYD WARSHALL ALGORITHM
Let’'s go over the premise of how Floyd-Warshall

algorithm works...
Let the vertices in a graph be numbered from 1 ... n.
Consider the subset {1,2,..., k} of these n vertices.

Imagine finding the shortest path from vertex i to vertex j that
uses vertices in the set {1,2,...,k} only.

There are two situations:
k is an intermediate vertex on the shortest path.
k is not an intermediate vertex on the shortest path.
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FLOYD WARSHALL ALGORITHM - EXAMPLE
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1 Consider Vertex 1:
p=10 2 D(3,2) = D(3,1) + D(1,2)
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3) _ Consider Vertex 3:
D =102 Nothing changes.
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Consider Vertex 2:
D(1,3) = D(1,2) + D(2,3)




FLOYD WARSHALL ALGORITHM

Looking at this example, we can come up with the following
algorithm:

Let D store the matrix with the initial graph edge information
initially, and update D with the calculated shortest paths.

For k=1 to n {
For i=1 to n {
For j=1 to n
D[i,j] = min(D[i,3],D[i,k]+D[k,3])
}
}

The final D matrix will store all the shortest paths.



FLOYD WARSHALL ALGORITHM

o Example on the board...




FLOYD WARSHALL — PATH RECONSTRUCTION

The path matrix will store the last vertex visited on the path from i to |.

So pathli][j] = k means that in the shortest path from vertex i to vertex j, the LAST
vertex on that path before you get to vertex j is k.

Based on this definition, we must initialize the path matrix as follows:
path[i][j] = i if i'=j and there exists an edge from i to |
= NIL otherwise

The reasoning is as follows:

If you want to reconstruct the path at this point of the algorithm when you aren’t
allowed to visit intermediate vertices, the previous vertex visited MUST be the
source vertex |.

NIL is used to indicate the absence of a path.



FLOYD WARSHALL — PATH RECONSTRUCTION

Before you run Floyd’s, you initialize your distance matrix D and
path matrix P to indicate the use of no immediate vertices.

(Thus, you are only allowed to traverse direct paths between vertices.)

Then, at each step of Floyd's, you essentially find out whether or not
using vertex k will improve an estimate between the distances
between vertex i and vertex |j.

If it does improve the estimate here’s what you need to record:

record the new shortest path weight between i and j
record the fact that the shortest path between i and j goes through k



FLOYD WARSHALL — PATH RECONSTRUCTION
If it does improve the estimate here’s what you need to record:

record the new shortest path weight between i and |
We don’t need to change our path and we do not update the path matrix
record the fact that the shortest path between i and j goes through k

We want to store the last vertex from the shortest path from vertex k to
vertex j. This will NOT necessarily be k, but rather, it will be path[k]][j].

This gives us the following update to our algorithm:

if (D[i]

vertex

D[i]
path
¥

K]+DIK][1] < D[i][j]) { // Update is necessary to use k as intermediate

1] = D] K]+DIK]DT

1101 = path[K][j];



PATH RECONSTRUCTION

o Example on the board...




PATH RECONSTRUCTION

Now, the once this path matrix is computed, we have all the information necessary to

reconstruct the path.

Consider the following path matrix (indexed from 1 to 5 instead of O to 4):

NIL 3 4 5 1

4 NIL 4 2 1

4 3 NIL 2 1

Reconstruct the path from V8rtex1 tofvertex pPNIL |1
First look at patipf4][2] = 3| 3This signffies that|dn the paltiNidm 1 |

before 2.

Thus, the path is now, 1...3->2.
Now, look at path[1][3], this stores a 4. Thus, we find the last vertex visited on the path from 1 to 3 is

0 2, 3 is the last vertex visited

So, our path now looks like 1...4->3->2. So, we must now look at path[1][4]. This stores a 5,
thus, we know our path is 1...5->4->3->2. When we finally look at path[1][5], we find 1,

which means our path really is 1->5->4->3->2.



TRANSITIVE CLOSURE

Computing a transitive closure of a graph gives you complete
information about which vertices are connected to which other

vertices.

Input:
P Un-weighted graph G: WIi][j] = 1, if (i,)) eE, WIi][j] = O otherwise.
Output:
T[i][j] = 1, if there is a path from i to j in G, T[i][j] = O otherwise.
Algorithm:

Just run Floyd-Warshall with weights 1, and make TJ[i][j] = 1, whenever
D[i][j] < oo.
More efficient: use only Boolean operators



TRANSITIVE CLOSURE

Transitive-Closure (W[l..n][1l..n])

01 T « W // T

02 for k <1 to n do // compute T

03 for 1 <1 to n do

04 for J <1 to n do

05 TI1][J] «< TI1][3] v (T[1]1[k] A T[k][J])

0o return T

This is the SAME as the other Floyd-Warshall Algorithm, except for
when we find a non-infinity estimate, we simply add an edge to the
transitive closure graph.

Every round we build off the previous paths reached.

After iterating through all vertices being intermediate vertices, we have tried to
connect all pairs of vertices i and j through all intermediate vertices k.



TRANSITIVE CLOSURE

o Example on the board...
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