
Floyd-Warshall Algorithm 



FLOYD-WARSHALL ALGORITHM 
 A weighted, directed graph is a collection vertices 

connected by weighted edges (where the weight is 
some real number). 

 One of the most common examples of a graph in the real 
world is a road map.  
 Each location is a vertex and each road connecting locations is an 

edge.  

 We can think of the distance traveled on a road from one location to 
another as the weight of that edge. 
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STORING A WEIGHTED, DIRECTED GRAPH 
 Adjacency Matrix: 

 Let D be an edge-weighted graph in adjacency-matrix 
form 

• D(i,j) is the weight of edge (i, j), or  if there is no such 
edge. 

• Update matrix D, with the shortest path through 
immediate vertices. 
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FLOYD-WARSHALL ALGORITHM 

 Given a weighted graph, we want to know the 

shortest path from one vertex in the graph to 

another.   

 The Floyd-Warshall algorithm determines the shortest 

path between all pairs of vertices in a graph. 

 

 What is the difference between Floyd-Warshall and 

Dijkstra’s?? 



FLOYD-WARSHALL ALGORITHM 
If  V is the number of vertices, Dijkstra’s runs in (V2)  

  We could just call Dijkstra |V| times, passing a different 

source vertex each time. 

  (V  V2) = (V3) 

 (Which is the same runtime as the Floyd-Warshall 

 Algorithm) 

 

  BUT, Dijkstra’s doesn’t work with negative-weight 

edges. 

 



FLOYD WARSHALL ALGORITHM 
 Let’s go over the premise of how Floyd-Warshall 

algorithm works… 

 Let the vertices in a graph be numbered from 1 … n. 

 Consider the subset {1,2,…, k} of these n vertices. 

 

 Imagine finding the shortest path from vertex i to vertex j that 
uses vertices in the set {1,2,…,k} only.   

 

 There are two situations: 
1) k is an intermediate vertex on the shortest path. 

2) k is not an intermediate vertex on the shortest path. 
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FLOYD WARSHALL ALGORITHM - EXAMPLE 

Consider Vertex 3: 

   Nothing changes. 

Consider Vertex 2: 

  D(1,3) = D(1,2) + D(2,3) 

Consider Vertex 1: 

  D(3,2) = D(3,1) + D(1,2) 

Original weights. 



FLOYD WARSHALL ALGORITHM 

 Looking at this example, we can come up with the following 
algorithm: 
 Let D store the matrix with the initial graph edge information 

initially, and update D with the calculated shortest paths. 

 
For k=1 to n { 

 For i=1 to n { 

     For j=1 to n 

   D[i,j] = min(D[i,j],D[i,k]+D[k,j]) 

 } 

} 

 

 The final D matrix will store all the shortest paths. 

 



FLOYD WARSHALL ALGORITHM 

 Example on the board… 



FLOYD WARSHALL – PATH RECONSTRUCTION 
 The path matrix will store the last vertex visited on the path from i to j.  

 So path[i][j] = k means that in the shortest path from vertex i to vertex j, the LAST 
vertex on that path before you get to vertex j is k.  

 

 Based on this definition, we must initialize the path matrix as follows: 
 path[i][j] = i if  i!=j and there exists an edge from i to j 

               = NIL otherwise 

 

 The reasoning is as follows: 
 If you want to reconstruct the path at this point of the algorithm when you aren’t 

allowed to visit intermediate vertices, the previous vertex visited MUST be the 
source vertex i.  

 NIL is used to indicate the absence of a path. 

 



FLOYD WARSHALL – PATH RECONSTRUCTION 
 Before you run Floyd’s, you initialize your distance matrix D and 

path matrix P to indicate the use of no immediate vertices.  
 (Thus, you are only allowed to traverse direct paths between vertices.) 

 

 Then, at each step of Floyd’s, you essentially find out whether or not 
using vertex k will improve an estimate between the distances 
between vertex i and vertex j. 

 

 If it does improve the estimate here’s what you need to record: 

 
1) record the new shortest path weight between i and j 

2) record the fact that the shortest path between i and j goes through k 

 



FLOYD WARSHALL – PATH RECONSTRUCTION 
 If it does improve the estimate here’s what you need to record: 

1) record the new shortest path weight between i and j 
 We don’t need to change our path and we do not update the path matrix 

2) record the fact that the shortest path between i and j goes through k 
 We want to store the last vertex from the shortest path from vertex k to 

vertex j. This will NOT necessarily be k, but rather, it will be path[k][j]. 

 

This gives us the following update to our algorithm: 

if (D[i][k]+D[k][j] < D[i][j]) { // Update is necessary to use k as intermediate 
vertex 

     D[i][j] = D[i][k]+D[k][j]; 

     path[i][j] = path[k][j]; 

} 
 

 



PATH RECONSTRUCTION 

 Example on the board… 



PATH RECONSTRUCTION 
 Now, the once this path matrix is computed, we have all the information necessary to 

reconstruct the path.  
 Consider the following path matrix (indexed from 1 to 5 instead of 0 to 4): 

 

 

 

 

 

 Reconstruct the path from vertex1 to vertex 2: 
 First look at path[1][2] = 3.   This signifies that on the path from 1 to 2, 3 is the last vertex visited 

before 2.  
 Thus, the path is now, 1…3->2.  

 Now, look at path[1][3], this stores a 4. Thus, we find the last vertex visited on the path from 1 to 3 is 
4.  

 So, our path now looks like 1…4->3->2. So, we must now look at path[1][4]. This stores a 5,  

 thus, we know our path is 1…5->4->3->2. When we finally look at path[1][5], we find 1,  

 which means our path really is 1->5->4->3->2. 
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TRANSITIVE CLOSURE 

 Computing a transitive closure of a graph gives you complete 
information about which vertices are connected to which other 
vertices. 

 

 Input: 
 Un-weighted graph G: W[i][j] = 1, if (i,j)E, W[i][j] = 0 otherwise. 

 Output: 
 T[i][j] = 1, if there is a path from i to j in G, T[i][j] = 0 otherwise. 

 Algorithm: 
 Just run Floyd-Warshall with weights 1, and make T[i][j] = 1, whenever 

D[i][j] <  

 More efficient: use only Boolean operators   

 



TRANSITIVE CLOSURE 

 This is the SAME as the other Floyd-Warshall Algorithm, except for 
when we find a non-infinity estimate, we simply add an edge to the 
transitive closure graph.  

 

 Every round we build off the previous paths reached.  
 After iterating through all vertices being intermediate vertices, we have tried to 

connect all pairs of vertices i and j through all intermediate vertices k. 

 

Transitive-Closure(W[1..n][1..n])  

01 T   W    // T(0) 

02 for k  1 to n do // compute T(k) 

03    for i 1 to n do 

04       for j 1 to n do 

05          T[i][j]   T[i][j]   (T[i][k]  T[k][j])  

06 return T 



TRANSITIVE CLOSURE 

 Example on the board… 
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