RECORDS

RDS

THIN

COR

LB

POINTERS AND RECORDS

static * dyna

current

current”

POINTERS AND RECORDS

static s« dynamic

current

current”.name <- “Bob”

POINTERS AND RECORDS

current”?.SSN <- 123456789 ‘

WHAT’'S THE BIG DEAL

We already knew about static data
Now we see we can allocate dynamic data but

Each piece of dynamic data seems to need a
pointer variable and pointers seem to be static

So how can this give me flexibility

LB

QUESTIONS?

INTRODUCTION TO LINKED LISTS

PROPERTIES OF LISTS

We must maintain a list of data
Sometimes we want to use only a little memory:

Sometimes we need to use more memory

Declaring variables in the standard way won'’t
work here because we don’t know how many
variables to declare

We need a way to allocate and de-allocate data
dynamically (i.e., on the fly)

LINKED LISTS “LIVE” IN THE HEAP

[122]— [J—[2t]—[23]+
\'%
e
6‘30‘(‘ Main this_var [4 list_head

The'heap is memory not used by the stack
Dy#amic variables live in the heap
Wemneed a pointer variable to access our list in the heap

LINKED LISTS

3 33 3O

With pointers, we can form a “chain” of data
structures:

[[3

List Node definesa Record
data isoftype Num

next isoftype Ptr toa List Node
endrecord //List Node

LINKED LIST RECORD TEMPLATE

<Type Name> definesa record

data isoftype <type>
next isoftype ptr toa <Type Name>

endrecord

Example:
Char Node definesa record

data isoftype char
next isoftype ptr toa Char Node

endrecord

CREATING A LINKED LIST NODE

Node definesa record
data isoftype num
next isoftype ptr toa Node

endrecord

And a pointer to a Node record.:

current isoftype ptr toa Node

current <- new (Node)

POINTERS AND LINKED LISTS

|
|

static « dynamic

current”
current”.data

current”.next

ACCESSING THE DATA FIELD OF A NODE

|
current —|—> 42 ——H

static « dynamic

current”®.data <- 42

current”.next <- NIL

PROPER DATA ABSTRACTION

VsS.

LB

COMPLEX DATA RECORDS AND LISTS

The examples so far have shown a single num
variable as node data, but in reality there are
usually more, as in:

Node Rec Type definesa record
this data isoftype Num
that data isoftype Char
other data isoftype Some Rec Type
next isoftype Ptr toa Node Rec Type

endrecord // Node Rec Type r'i
pualal

A BETTER APPROACH WITH HIGHER
ABSTRACTION

One should separate the data from the structure
that holds the data, as In:

Node Data Type definesa Record

this data isoftype Num

that data isoftype Char

other _data isoftype Some Rec Type
endrecord // Node _Data Type

Node Record Type definesa Record
data isoftype Node Data Type
next isoftype Ptr toa Node Rec Type
endrecord // Node Record Type

CREATING A POINTER TO THE HEAP

I Main list_head I

list head isoftype ptr toa List Node

Notice that list_head is not initialized and points to
“garbage.”

CREATING A NEW NODE IN THE LIST

3~

I Main list_head I

list head <- new(List Node)

FILLING IN THE DATA FIELD

(2]~

I Main list_head I

list head”.data <- 42

The ™ operator follows the pointer into the heap.

CREATING A SECOND NODE

L2l [

I Main list_head I

list head”.data <- 42
list head”.next <- new(List Node)

The “.” operator accesses a field of the record.

CLEANLY TERMINATING THE LINKED LIST

[42] 1= 91| +H

I Main list_head I

list head”.next”.data <- 91
list head”.next”.next <- NIL

We terminate linked lists “cleanly” using NIL.

DELETING BY MOVING THE POINTER

M}\mw

Main list_head

If there is nothing pointing to an area of memory in
the heap, it is automatically deleted.

list head <- list head”.next

