
RECORDS

RECORDS WITHIN RECORDS

There is nothing to prevent us from placing records inside of
records (a field within a record):

Date_Type definesa record

 day, month, year isoftype num

Endrecord

Student_Type definesa record

 name isoftype string

 gpa isoftype num

 birth_day isoftype Date_Type

 graduation_day isoftype Date_Type

endrecord

This name is now

a type which can

be used anywhere

a type such as

“Num” can be

used.

What are these called?

Types

LB

POINTERS AND RECORDS

current

current^

Bob

123456789

static dynamic

POINTERS AND RECORDS

current

current^.name <- “Bob”

Bob

123456789

static dynamic

POINTERS AND RECORDS

current

current^.SSN <- 123456789

Bob

123456789

static dynamic

WHAT’S THE BIG DEAL

 We already knew about static data

 Now we see we can allocate dynamic data but

 Each piece of dynamic data seems to need a

pointer variable and pointers seem to be static

 So how can this give me flexibility

LB

QUESTIONS?

INTRODUCTION TO LINKED LISTS

PROPERTIES OF LISTS

 We must maintain a list of data

 Sometimes we want to use only a little memory:

 Sometimes we need to use more memory

 Declaring variables in the standard way won’t
work here because we don’t know how many
variables to declare

 We need a way to allocate and de-allocate data
dynamically (i.e., on the fly)

LINKED LISTS “LIVE” IN THE HEAP

•The heap is memory not used by the stack

•Dynamic variables live in the heap

•We need a pointer variable to access our list in the heap

Main this_var list_head 4

12 18 21 23

LINKED LISTS

With pointers, we can form a “chain” of data

structures:

List_Node definesa Record

 data isoftype Num

 next isoftype Ptr toa List_Node

endrecord //List_Node

4 17 42

LINKED LIST RECORD TEMPLATE

<Type Name> definesa record

 data isoftype <type>

 next isoftype ptr toa <Type Name>

endrecord

Example:

 Char_Node definesa record

 data isoftype char

 next isoftype ptr toa Char_Node

 endrecord

CREATING A LINKED LIST NODE

Node definesa record

 data isoftype num

 next isoftype ptr toa Node

endrecord

And a pointer to a Node record:

current isoftype ptr toa Node

current <- new(Node)

POINTERS AND LINKED LISTS

current

current^

current^.next

current^.data

static dynamic

ACCESSING THE DATA FIELD OF A NODE

current

current^.data <- 42

current^.next <- NIL

42

static dynamic

PROPER DATA ABSTRACTION

Vs.

COMPLEX DATA RECORDS AND LISTS

The examples so far have shown a single num

variable as node data, but in reality there are

usually more, as in:

Node_Rec_Type definesa record

 this_data isoftype Num

 that_data isoftype Char

 other_data isoftype Some_Rec_Type

 next isoftype Ptr toa Node_Rec_Type

endrecord // Node_Rec_Type

LB

A BETTER APPROACH WITH HIGHER

ABSTRACTION

One should separate the data from the structure
that holds the data, as in:

Node_Data_Type definesa Record

 this_data isoftype Num

 that_data isoftype Char

 other_data isoftype Some_Rec_Type

endrecord // Node_Data_Type

Node_Record_Type definesa Record

 data isoftype Node_Data_Type

 next isoftype Ptr toa Node_Rec_Type

endrecord // Node_Record_Type

CREATING A POINTER TO THE HEAP

list_head isoftype ptr toa List_Node

Notice that list_head is not initialized and points to

“garbage.”

Main list_head

?

CREATING A NEW NODE IN THE LIST

list_head <- new(List_Node)

Main list_head

?

FILLING IN THE DATA FIELD

list_head^.data <- 42

The ^ operator follows the pointer into the heap.

Main list_head

? 42

CREATING A SECOND NODE

list_head^.data <- 42

list_head^.next <- new(List_Node)

The “.” operator accesses a field of the record.

Main list_head

42 ?

CLEANLY TERMINATING THE LINKED LIST

list_head^.next^.data <- 91

list_head^.next^.next <- NIL

We terminate linked lists “cleanly” using NIL.

Main list_head

42 91

DELETING BY MOVING THE POINTER

If there is nothing pointing to an area of memory in

the heap, it is automatically deleted.

list_head <- list_head^.next

Main list_head

42 91

