
Data Structures

11.2

 Define a data structure.

 Define an array as a data structure and how it is used to store a

list of data

 items.

 Distinguish between the name of an array and the names of the

elements in an

 array.

 Describe operations defined for an array.

 Define a record as a data structure and how it is used to store

attributes

 belonging to a single data element.

 Lecture Objectives

11.3

11-1 ARRAYS

Imagine that we have 100 scores. We need to read them,

process them and print them. We must also keep these

100 scores in memory for the duration of the program.

We can define a hundred variables, each with a different

name, as shown in Figure 11.1.

Figure 11.1 A hundred individual variables

11.4

But having 100 different names creates other problems. We

need 100 references to read them, 100 references to process

them and 100 references to write them. Figure 11.2 shows a

diagram that illustrates this problem.

Figure 11.2 Processing individual variables

11.5

An array is a sequenced collection of elements, normally of

the same data type, although some programming languages

accept arrays in which elements are of different types. We

can refer to the elements in the array as the first element, the

second element and so forth, until we get to the last element.

Figure 11.3 Arrays with indexes

11.6

We can use loops to read and write the elements in an array.

We can also use loops to process elements. Now it does not

matter if there are 100, 1000 or 10,000 elements to be

processed—loops make it easy to handle them all. We can

use an integer variable to control the loop and remain in the

loop as long as the value of this variable is less than the total

number of elements in the array (Figure 11.4).

We have used indexes that start from 1;

some modern languages such as C,

C++ and Java start indexes from 0.

 i

11.7

Figure 11.4 Processing an array

11.8

Example 11.1

Compare the number of instructions needed to handle 100

individual elements in Figure 11.2 and the array with 100 in

Figure 11.4. Assume that processing each score needs only one

instruction.

Solution

❑ In the first case, we need 100 instructions to read, 100

 instructions to write and 100 instructions to process. The

 total is 300 instructions.

❑ In the second case, we have three loops. In each loop we have

 two instructions, for a total of six instructions. However, we

 also need three instructions for initializing the index and three

 instructions to check the value of the index. In total, we have

 twelve instructions.

11.9

Example 11.2

The number of cycles (fetch, decode, and execute phases) the

computer needs to perform is not reduced if we use an array. The

number of cycles is actually increased, because we have the extra

overhead of initializing, incrementing and testing the value of the

index. But our concern is not the number of cycles: it is the

number of lines we need to write the program.

11.1

0

Example 11.3

In computer science, one of the big issues is the reusability of

programs—for example, how much needs to be changed if the

number of data items is changed. Assume we have written two

programs to process the scores as shown in Figure 11.2 and

Figure 11.4. If the number of scores changes from 100 to 1000,

how many changes do we need to make in each program? In the

first program we need to add 3 × 900 = 2700 instructions. In the

second program, we only need to change three conditions

(I > 100 to I > 1000). We can actually modify the diagram in

Figure 11.4 to reduce the number of changes to one.

11.11

Array name versus element name

In an array we have two types of identifiers: the name of the

array and the name of each individual element. The name of

the array is the name of the whole structure, while the name

of an element allows us to refer to that element. In the array

of Figure 11.3, the name of the array is scores and name of

each element is the name of the array followed by the index,

for example, scores[1], scores[2], and so on. In this chapter,

we mostly need the names of the elements, but in some

languages, such as C, we also need to use the name of the

array.

11.1

2

Multi-dimensional arrays

The arrays discussed so far are known as one-dimensional

arrays because the data is organized linearly in only one

direction. Many applications require that data be stored in

more than one dimension. Figure 11.5 shows a table, which

is commonly called a two-dimensional array.

Figure 11.5 A two-dimensional array

11.1

3

Memory layout

The indexes in a one-dimensional array directly define the

relative positions of the element in actual memory. Figure

11.6 shows a two-dimensional array and how it is stored in

memory using row-major or column-major storage. Row-

major storage is more common.

Figure 11.6 Memory layout of arrays

11.1

4

Example 11.4

We have stored the two-dimensional array students in memory.

The array is 100 × 4 (100 rows and 4 columns). Show the address

of the element students[5][3] assuming that the element

student[1][1] is stored in the memory location with address 1000

and each element occupies only one memory location. The

computer uses row-major storage.

Solution

We can use the following formula to find the location of an

element, assuming each element occupies one memory location.

If the first element occupies the location 1000, the target element

occupies the location 1018.

