
ELEMENTARY DATA STRUCTURES

Stacks, Queues, & Lists

Amortized analysis

Trees

THE STACK ADT (§2.1.1)

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

2

 The Stack ADT (Abstract
Data Type) stores arbitrary
objects

 Insertions and deletions
follow the last-in first-out
scheme

 Think of a spring-loaded
plate dispenser

 Main stack operations:
 push(object): inserts an

element

 object pop(): removes and
returns the last inserted
element

 Auxiliary stack
operations:
 object top(): returns the

last inserted element
without removing it

 integer size(): returns the
number of elements
stored

 boolean isEmpty():
indicates whether no
elements are stored

APPLICATIONS OF STACKS

 Direct applications

 Page-visited history in a Web browser

 Undo sequence in a text editor

 Chain of method calls in the Java Virtual Machine or
C++ runtime environment

 Indirect applications

 Auxiliary data structure for algorithms

 Component of other data structures

3

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

METHOD STACK IN THE JVM

 The Java Virtual Machine (JVM)
keeps track of the chain of
active methods with a stack

 When a method is called, the
JVM pushes on the stack a
frame containing
 Local variables and return value

 Program counter, keeping track of
the statement being executed

 When a method ends, its frame
is popped from the stack and
control is passed to the method
on top of the stack 4

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

main() {

 int i = 5;

 foo(i);

 }

foo(int j) {

 int k;

 k = j+1;

 bar(k);

 }

bar(int m) {

 …

 }

bar
 PC = 1
 m = 6

foo
 PC = 3
 j = 5
 k = 6

main
 PC = 2
 i = 5

ARRAY-BASED STACK (§2.1.1)
E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

5

 A simple way of
implementing the
Stack ADT uses an
array

 We add elements
from left to right

 A variable t keeps
track of the index of
the top element (size
is t+1)

S
0 1 2 t

…

Algorithm pop():

 if isEmpty() then

 throw EmptyStackException

 else

 t  t  1

 return S[t + 1]

Algorithm push(o)

 if t = S.length  1 then

 throw FullStackException

 else

 t  t + 1

 S[t]  o

PERFORMANCE AND LIMITATIONS

Performance

 Let n be the number of elements in the stack

 The space used is O(n)

 Each operation runs in time O(1)

Limitations

 The maximum size of the stack must be defined a

priori and cannot be changed

 Trying to push a new element into a full stack

causes an implementation-specific exception

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

6

GROWABLE ARRAY-BASED STACK

(§1.5)

 In a push operation, when
the array is full, instead of
throwing an exception, we
can replace the array with a
larger one

How large should the new
array be?
 incremental strategy:

increase the size by a
constant c

 doubling strategy: double the
size

7

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

Algorithm push(o)

 if t = S.length  1 then

 A  new array of

 size …

 for i  0 to t do

 A[i]  S[i]

 S  A

 t  t + 1

 S[t]  o

COMPARISON OF THE

STRATEGIES

We compare the incremental strategy and the

doubling strategy by analyzing the total time

T(n) needed to perform a series of n push

operations

We assume that we start with an empty stack

represented by an array of size 1

We call amortized time of a push operation

the average time taken by a push over the

series of operations, i.e., T(n)/n 8

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

ANALYSIS OF THE INCREMENTAL

STRATEGY

We replace the array k = n/c times

The total time T(n) of a series of n push
operations is proportional to

n + c + 2c + 3c + 4c + … + kc =

n + c(1 + 2 + 3 + … + k) =

n + ck(k + 1)/2

Since c is a constant, T(n) is O(n + k2), i.e.,
O(n2)

The amortized time of a push operation is O(n)

9

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

DIRECT ANALYSIS OF THE DOUBLING

STRATEGY

We replace the array k = log2 n
times

The total time T(n) of a series of
n push operations is proportional
to

n + 1 + 2 + 4 + 8 + …+ 2k =

n + 2k + 1 1 = 2n 1

T(n) is O(n)

The amortized time of a push
operation is O(1)

10

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

geometric series

1

2

1
4

8

 Amortization: to pay of gradually by making periodic
payments

 Rather than focusing on each operation separately, it
consider the running time of a series of these operations.

 We view a computer as a coin-operated device requiring
1 cyber-dollar for a constant amount of computing.

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

11

Accounting Method Analysis
of the Doubling Strategy

 We set up a scheme for charging operations. This is
known as an amortization scheme.

 The scheme must give us always enough money to
pay for the actual cost of the operation.

 The total cost of the series of operations is no more
than the total amount charged.

(amortized time)  (total $ charged) / (# operations)

AMORTIZATION SCHEME FOR THE

DOUBLING STRATEGY

 Consider again the k phases, where each phase consisting of twice as

many pushes as the one before.
 It costs one cyber-dollar for to push one element, excluding the growth of the array.

 Growing the array from k to 2k costs k cyber-dollars for copying elements.

 At the end of a phase we must have saved enough to pay for the array-

growing push of the next phase.

 At the end of phase i we want to have saved i cyber-dollars, to pay for the

array growth for the beginning of the next phase.

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

12

0 2 4 5 6 7 3 1

$ $ $ $

$ $ $ $

0 2 4 5 6 7 8 9 11 3 10 12 13 14 15 1

$

$

• We charge $3 for a push. The $2 saved for a regular push are “stored”

in the second half of the array. Thus, we will have 2(i/2)=i cyber-dollars
saved at then end of phase i.
• Therefore, each push runs in O(1) amortized time; n pushes run in O(n)
time.

THE QUEUE ADT (§2.1.2)

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

13

 The Queue ADT stores arbitrary

objects

 Insertions and deletions follow

the first-in first-out scheme

 Insertions are at the rear of the

queue and removals are at the

front of the queue

 Main queue operations:

 enqueue(object): inserts an

element at the end of the queue

 object dequeue(): removes and

returns the element at the front

of the queue

 Auxiliary queue
operations:
 object front(): returns the

element at the front without
removing it

 integer size(): returns the
number of elements stored

 boolean isEmpty(): indicates
whether no elements are
stored

 Exceptions
 Attempting the execution of

dequeue or front on an
empty queue throws an
EmptyQueueException

APPLICATIONS OF QUEUES

 Direct applications

 Waiting lines

 Access to shared resources (e.g., printer)

 Multiprogramming

 Indirect applications

 Auxiliary data structure for algorithms

 Component of other data structures

14

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

ARRAY-BASED QUEUE

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

15

 Use an array of size N in a circular fashion

 Two variables keep track of the front and rear
f index of the front element

r index immediately past the rear element

 Array location r is kept empty

Q

0 1 2 r f

normal configuration

Q

0 1 2 f r

wrapped-around configuration

QUEUE OPERATIONS

We use the

modulo operator

(remainder of

division)

16

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

Algorithm size()

 return (N  f + r) mod N

Algorithm isEmpty()

 return (f = r)

Q

0 1 2 r f

Q

0 1 2 f r

QUEUE OPERATIONS (CONT.)

 Operation enqueue
throws an exception if
the array is full

 This exception is
implementation-
dependent

17

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

Algorithm enqueue(o)

 if size() = N  1 then

 throw FullQueueException

 else

 Q[r]  o

 r  (r + 1) mod N

Q

0 1 2 r f

Q

0 1 2 f r

QUEUE OPERATIONS (CONT.)

 Operation dequeue
throws an exception if
the queue is empty

 This exception is
specified in the queue
ADT

18

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

Algorithm dequeue()

 if isEmpty() then

 throw EmptyQueueException

 else

 o  Q[f]

 f  (f + 1) mod N

 return o

Q

0 1 2 r f

Q

0 1 2 f r

GROWABLE ARRAY-BASED QUEUE

 In an enqueue operation, when the array is

full, instead of throwing an exception, we

can replace the array with a larger one

Similar to what we did for an array-based

stack

The enqueue operation has amortized

running time

 O(n) with the incremental strategy

 O(1) with the doubling strategy
19

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

SINGLY LINKED LIST

 A singly linked list is a
concrete data structure
consisting of a sequence
of nodes

 Each node stores
 element

 link to the next node

20

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

next

elem node

A B C D



QUEUE WITH A SINGLY LINKED LIST

 We can implement a queue with a singly linked list

 The front element is stored at the first node

 The rear element is stored at the last node

 The space used is O(n) and each operation of the

Queue ADT takes O(1) time

21

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

f

r



nodes

elements

LIST ADT (§2.2.2)

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

22

 The List ADT models a

sequence of positions

storing arbitrary objects

 It allows for insertion

and removal in the

“middle”

 Query methods:

 isFirst(p), isLast(p)

Accessor methods:

 first(), last()

 before(p), after(p)

 Update methods:

 replaceElement(p, o),

swapElements(p, q)

 insertBefore(p, o),

insertAfter(p, o),

 insertFirst(o),

insertLast(o)

 remove(p)

DOUBLY LINKED LIST

 A doubly linked list provides a natural

implementation of the List ADT

 Nodes implement Position and store:

 element

 link to the previous node

 link to the next node

 Special trailer and header nodes

23

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

prev next

elem

trailer header nodes/positions

elements

node

LIST ADT
 How about array-based List?

24

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

TREES (§2.3)

 In computer science, a

tree is an abstract model

of a hierarchical structure

 A tree consists of nodes

with a parent-child

relation

 Applications:

 Organization charts

 File systems

 Programming

environments

25

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

Computers”R”Us

Sales R&D Manufacturing

Laptops Desktops US International

Europe Asia Canada

TREE TERMINOLOGY

 Root: node without parent (A)

 Internal node: node with at least one
child (A, B, C, F)

 External node (a.k.a. leaf): node
without children (E, I, J, K, G, H, D)

 Ancestors of a node: parent,
grandparent, grand-grandparent,
etc.

 Depth of a node: number of
ancestors

 Height of a tree: maximum depth of
any node (3)

 Descendant of a node: child,
grandchild, grand-grandchild, etc.

26

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

subtree

A

B D C

G H E F

I J K

Subtree: tree consisting of
a node and its
descendants

TREE ADT (§2.3.1)
 Generic methods:

 integer size()

 boolean isEmpty()

 objectIterator elements()

 positionIterator positions()

 Accessor methods:

 position root()

 position parent(p)

 positionIterator children(p)

27

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

Query methods:

 boolean isInternal(p)

 boolean isExternal(p)

 boolean isRoot(p)

Update methods:

 swapElements(p, q)

 object replaceElement(p, o)

Additional update methods
may be defined by data
structures implementing the
Tree ADT

PREORDER TRAVERSAL (§2.3.2)

 A traversal visits the nodes of a

tree in a systematic manner

 In a preorder traversal, a node is

visited before its descendants

 Application: print a structured

document

28

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

Make Money Fast!

1. Motivations References 2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme

1.1 Greed 1.2 Avidity
2.3 Bank
Robbery

1

2

3

5

4
6 7 8

9

Algorithm preOrder(v)

visit(v)

for each child w of v

 preorder (w)

POSTORDER TRAVERSAL (§2.3.2)
 In a postorder traversal, a node is

visited after its descendants

 Application: compute space used
by files in a directory and its
subdirectories
 The directory itself

 Its children directories

 The files

29

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

Algorithm postOrder(v)

for each child w of v

 postOrder (w)

visit(v)

cs16/

homeworks/
todo.txt

1K
programs/

DDR.java
10K

Stocks.java
25K

h1c.doc
3K

h1nc.doc
2K

Robot.java
20K

9

3

1

7

2 4 5 6

8

AMORTIZED ANALYSIS OF TREE

TRAVERSAL

Time taken in preorder or postorder traversal

of an n-node tree is proportional to the sum,

taken over each node v in the tree, of the time

needed for the recursive call for v.

 The call for v costs $(cv + 1), where cv is the number

of children of v

 For the call for v, charge one cyber-dollar to v and

charge one cyber-dollar to each child of v.

 Each node (except the root) gets charged twice:

once for its own call and once for its parent’s call.

 Therefore, traversal time is O(n).
30

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

BINARY TREES (§2.3.3)

 A binary tree is a tree with the
following properties:
 Each internal node has at most two

children (proper)

 The children of a node are an
ordered pair (left child comes before
right child)

 We call the children of an internal
node left child and right child

 Alternative recursive definition: a
binary tree is either
 a tree consisting of a single node, or

 a tree whose root has an ordered
pair of children, each of which is a
binary tree

31

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

Applications:
 arithmetic expressions

 decision processes

 searching

A

B C

F G D E

H I

ARITHMETIC EXPRESSION TREE

 Binary tree associated with an arithmetic expression
 internal nodes: operators

 external nodes: operands

 Example: arithmetic expression tree for the
expression (2  (a  1) + (3  b))

32

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

+

 

 2

a 1

3 b

DECISION TREE

 Binary tree associated with a decision process

 internal nodes: questions with yes/no answer

 external nodes: decisions

 Example: dining decision

33

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

Want a fast meal?

How about coffee? On expense account?

Starbucks In ‘N Out Antoine's Denny’s

Yes No

Yes No Yes No

PROPERTIES OF BINARY TREES

 Notation

n number of nodes

e number of external

nodes

i number of internal

nodes

h height

34

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

Properties:

 e = i + 1

 n = 2e  1

 h  i

 h  (n  1)/2

 e  2h

 h  log2 e

 h  log2 (n + 1)  1

INORDER TRAVERSAL

 In an inorder
traversal a node is
visited after its left
subtree and before
its right subtree

35

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

Algorithm inOrder(v)

if isInternal (v)

inOrder (leftChild (v))

visit(v)

if isInternal (v)

inOrder (rightChild (v))

3

1

2

5

6

7 9

8

4

PRINTING ARITHMETIC EXPRESSIONS

 Specialization of an inorder
traversal
 print “(“ before traversing

left subtree

 print operand or operator
when visiting node

 print “)“ after traversing right
subtree

36

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

Algorithm printExpression(v)

if isInternal (v)
 print(“(’’)

inOrder (leftChild (v))

print(v.element ())

if isInternal (v)

inOrder (rightChild (v))

 print (“)’’)

+

 

 2

a 1

3 b
((2  (a  1)) + (3  b))

EULER TOUR TRAVERSAL

 Generic traversal of a binary tree

 Includes a special cases the preorder, postorder and inorder traversals

 Walk around the tree and visit each node three times:

 on the left (preorder)

 from below (inorder)

 on the right (postorder)

37

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

+



 2

5 1

3 2

L

B

R 

LINKED DATA STRUCTURE FOR REPRESENTING

TREES (§2.3.4)

 A node is represented by
an object storing

 Element

 Parent node

 Sequence of children
nodes

38

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s



B

D A

C E

F

B

 

A D F



C



E

LINKED DATA STRUCTURE FOR BINARY TREES

 A node is represented

by an object storing

 Element

 Parent node

 Left child node

 Right child node

39

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

B

D A

C E

 

   

B

A D

C E



ARRAY-BASED REPRESENTATION OF BINARY

TREES

nodes are stored in an array

40

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

…

 let rank(node) be defined as follows:

 rank(root) = 1

 if node is the left child of parent(node),

 rank(node) = 2*rank(parent(node))

 if node is the right child of parent(node),

 rank(node) = 2*rank(parent(node))+1

1

2 3

6 7 4 5

10 11

A

H G

F E

D

C

B

J

ARRAY-BASED REPRESENTATION OF

BINARY TREES

 Space requirement

41

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s

2/)1(2 += nN

