Stacks, Queues, & Lists
Amoxtized analysis
Trees

b -
"FFETFFTF,

<Y

THE STACK ADT (§2.1.1) =N

The Stack ADT (Abstract
Data Type) stores arbitrary

§ ?Q\

objects Auxiliary stack
Insertions and deletions operations:

follow the last-in first-out Object top(): returns the
scheme last inserted element

without removing it

Integer size(): returns the
number of elements

Think of a spring-loaded
plate dispenser

S24NPN.AS eleq Aleuswalg

Main stack operations: stored
push(object): inserts an boolean isEmpty():
element iIndicates whether no
object pop(): removes and elements are stored

returns the last inserted
element

/\

A

Direct applications %

Page-visited history in a Web browser S—

Undo sequence in a text editor

Chain of method calls in the Java Virtual Machine or

C++ runtime environment
Indirect applications

Auxiliary data structure for algorithms

Component of other data structures

APPLICATIONS OF STACKS

S24N1PN.AS eleq Adejuswalg

METHOD STACK IN THE JVM

The Java Virtual Machine (JvM) Main
keeps track of the chain of
active methods with a stack

When a method is called, the
JVM pushes on the stack a
frame containing

Local variables and return value

Program counter, keeping track of

the statement being executed
When a method ends, its frame
IS popped from the stack and
control is passed to the method
on top of the stack

foo

bar

ARRAY-BASED STACK (§2.1.1)
Algorithm pop():

. If then
A simple way of throw EmptyStackException
Implementing the |
Stack ADT uses an eise
array «—
We add elements return

from !eft to right Algorithm push(o)
A variable t keeps ift = then

track of the index of - _
the top element (size throw FullStackException

IS t+1) else
(_
(_

SSINIMIIS ejeq ATejusws[g

PERFORMANCE AND LIMITATIONS

Performance
Let n be the number of elements in the stack
The space used is O(n)
Each operation runs in time O(1)

Limitations

The maximum size of the stack must be defined a
priori and cannot be changed

Trying to push a new element into a full stack
causes an implementation-specific exception

S24N1PN.AS eleq Adejuswalg

GROWABLE ARRAY-BASED STACK

(81.5)

In a push operation, when
the array is full, instead of
throwing an exception, we | Algorithm push(o)
can replace the array witha 1ft= the
larger one <

How large should the new
array be?
Incremental strategy: P

Increase the size by a
constant ¢

doubling strategy: double the
size

SainPn.AS eleq ABuswa|3

fori< Ototdo
e

e
e

COMPARISON OF THE

STRATEGIES

We compare the incremental strategy and the
doubling strategy by analyzing the total time
T(n) needed to perform a series of n push
operations

We assume that we start with an empty stack
represented by an array of size 1

We call amortized time of a push operation
the average time taken by a push over the
series of operations, i.e., T(n)/n

S24N1PN.AS eleq Adejuswalg

ANALYSIS OF THE INCREMENTAL
STRATEGY

We replace the array k = n/c times

The total time T(n) of a series of n push
operations is proportional to

n+c+2c+3c+4c+...+kc=
n+c(l1+2+3+...+k)=
n + ck(k + 1)/2
Since c is a constant, T(n) is O(n + k?), i.e.,
O(n?)
The amortized time of a push operation is O(n)

S24N1PN.AS eleq Adejuswalg

DIRECT ANALYSIS OF THE DOUBLING
STRATEGY

o We replace the array k = log, n
times

n push operations is proportional
to

nN+1+2+4+8+ .. .+2k=
n+2k+1-1 =2n-1
o T(n) i1s O(n)
o The amortized time of a push
operation is O(1)

Accounting Method Analysis
of the Doubling Strategy &k

Amortization: to pay of gradually by making peribdic
payments

Rather than focusing on each operation separately, it
consider the running time of a series of these operation

We view a computer as a coin-operated device requirin
1 cyber-dollar for a constant amount of computing.

f'éa AJES]GBLUBE

&hpnns e

= We set up a scheme for charging operations. This i
known as an amortization scheme.

= The scheme must give us always enough money to
pay for the actual cost of the operation.

= The total cost of the series of operations is no more
than the total amount charged.

(amortized time) < (total $ charged) / (# operations)

AMORTIZATION SCHEME FOR THE
DOUBLING STRATEGY

Consider again the k phases, where each phase consisting of twice as

many pushes as the one before.
It costs one cyber-dollar for to push one element, excluding the growth of the array.
Growing the array from k to 2k costs k cyber-dollars for copying elements.

At the end of a phase we must have saved enough to pay for the array-
growing push of the next phase.

At the end of phase i we want to have saved i cyber-dollars, to pay for the
array growth for the beginning of the next phase.

®®® O ®
®O®®E ®

S24N1PN.AS eleq Adejuswalg

01234567 012345678 9101112131415

e We charge $3 for a push. The $2 saved for a regular push are “stored”
in the second half of the array. Thus, we will have 2(/2)=/cyber-dollars
saved at then end of phase /.

e Therefore, each push runs in (1) amortized time; 7 pushes run in O(n)

time.

THE QUEUE ADT (§2.1.2)

The Queue ADT stores arbitrary o Auxiliary queue

objects operations:
Insertions and deletions follow object front(): returns the J
the first-in first-out scheme element at the front withoutz

Ay

removing it
Integer size(): returns the
number of elements stored

: . boolean isEmpty(): indicate
Main queue operations: whether no elements are
enqueue(object): inserts an stored
element at the end of the queue EXCGp’[iOI’]S

object dequeue(): removes and : :
returns the element at the front Attempting the execution of
dequeue or front on an

of the queue
empty queue throws an
EmptyQueueException

Insertions are at the rear of the
gueue and removals are at the
front of the queue

S2.noN.IS e1eq

APPLICATIONS OF QUEUES

Direct applications
Waiting lines
Access to shared resources (e.g., printer)
Multiprogramming

Indirect applications
Auxiliary data structure for algorithms
Component of other data structures

m
()
3
®
-
=
Q
)
<
O
o]
t
Y
w
—t
=
c
o
—t
c
)
o)
»

ARRAY-BASED QUEUE

Use an array of size N in a circular fashion

Two variables keep track of the front and rear
f index of the front element
r index immediately past the rear element

Array location r is kept empty

S24N1PN.AS eleq Adejuswalg

normal configuration

wrapped-around configuration
EEENFEEEEEEEEEEEEN

QUEUE OPERATIONS

We use the Algorithm size()
modulo operator return

gﬁ/g%g)der of Algorithm isEmpty()
return

Sa4nn.Ag eleq Aleuswalg

QUEUE OPERATIONS (CONT.)

Operation enqueue Algorithm enqueue(o)
throws an exception if If = then
the array is full throw

This exception is else
Implementation- «—

dependent «

S24MdNAS eleq Alejusuis|g

QUEUE OPERATIONS (CONT.)

Operation dequeue Algorithm dequeue()
throws an exception if If then
the queue is empty throw

This exception is else

specified in the queue «—

ADT <_

return

59.MPN.S eyeq Alejusulgig

GROWABLE ARRAY-BASED QUEUE

In an engueue operation, when the array Is
full, instead of throwing an exception, we
can replace the array with a larger one

Similar to what we did for an array-based
stack

The engueue operation has amortized
running time

O(n) with the incremental strategy

O(1) with the doubling strategy

S24N1PN.AS eleq Adejuswalg

SINGLY LINKED LIST

o Asingly linked list is a
concrete data structure
consisting of a sequence
of nodes

o Each node stores
» element
» link to the next node

S24N1PN.AS eleq Adejuswalg

Q

QUEUE WITH A SINGLY LINKED LIST

We can implement a queue with a singly linked list
The front element is stored at the first node
The rear element is stored at the last node

The space used is O(n) and each operation of the
Queue ADT takes O(1) time r

—_—_—_——————_e—e—_ e —_—_—_ e —_ e —_ e, — e — — — — —

S24N1PN.AS eleq Adejuswalg

AN
~——— -~

{
|
|
:
f ——
I\

[
|
|
|
|
|
\

S

LisTADT (§2.2.2)

The List ADT models a
sequence of positions
storing arbitrary objects

It allows for insertion
and removal in the
“middle”

Query methods:
IsFirst(p), isLast(p)

Accessor methods:
first(), last()
before(p), after(p)

Update methods:

replaceElement(p, 0),
swapElements(p, q)

iInsertBefore(p, 0),
iInsertAfter(p, o),

iInsertFirst(o),
iInsertLast(o)

remove(p)

S24N1PN.AS eleq Adejuswalg

DOUBLY LINKED LIST

A doubly linked list provides a natural
Implementation of the List ADT

Nodes implement Position and store:
element
link to the previous node
link to the next node

Special trailer and header nodes

—_—_———————— e —_—_————_———————— — — —

~—e T o rgn

'

elem node-
___________________________ %;
trailer ’

/

—_—_—————e—eee e — —

LISTADT

o How about array-based List?

S24N1PN.AS eleq Adejuswalg

Trees (§2.3)

o In computer science, a
tree is an abstract model
of a hierarchical structure

o Atree consists of nodes
with a parent-child
relation

o Applications:
» Organization charts

» File systems

» Programming
environments

w3

S24NPN.IS B8

TREE TERMINOLOGY

Root: node without parent (A) # Subtree: tree consisting of
Internal node: node with at least one @ node and its
child (A, B, C, F) descendants

External node (a.k.a. leaf): node
without children (E, I, J, K, G, H, D)

Ancestors of a node: parent,
grandparent, grand-grandparent,
etc.

Depth of a node: number of
ancestors

Height of a tree: maximum depth o
any node (3)

Descendant of a node: child, I J [K]
grandchild, grand-grandchild, etc. subtree

eleq Alejuswalg

TRee ADT (§2.3.1)

Generic methods:
integer size()
boolean isEmpty()
objectlterator elements()
positionlterator positions()
Accessor methods:
position root()

position parent(p)
positionlterator children(p)

Query methods:
= boolean isInternal(p)
= boolean isExternal(p)
= boolean isRoot(p)

Update methods:
= swapElements(p, q)
= Object replaceElement(p, 0)
Additional update methods
may be defined by data
structures implementing the
Tree ADT

S24N1PN.AS eleq Adejuswalg

PREORDER TRAVERSAL (§2.3.2)

o Atraversal visits the nodes of a
tree in a systematic manner

o In a preorder traversal, a node is
visited before its descendants

o Application: print a structured
document

Algorithm preOrder(v)
visit(v)
for each child w of v
preorder (w)

S24n)on.S ey ATeJuswo[g

POSTORDER TRAVERSAL (§2.3.2)

In a postorder traversal, a node is
visited after its descendants

Application: compute space used
by files in a directory and its
subdirectories

The directory itself

Its children directories

The files

[homeworks/

Algorithm postOrder(v)
for each child w of v
postOrder (w)
VISIt(v)

[programs/

M
D
=]
D)
=]
=3
3§
P
£
)
9
t
Y
190}
—t
)
c
o
—t
c
)
D
»

AMORTIZED ANALYSIS OF TREE
TRAVERSAL

Time taken in preorder or postorder traversal
of an n-node tree is proportional to the sum,
taken over each node v in the tree, of the time
needed for the recursive call for v.

The call for v costs $(c, + 1), where c, is the number
of children of v

For the call for v, charge one cyber-dollar to v and
charge one cyber-dollar to each child of v.

Each node (except the root) gets charged twice:
once for its own call and once for its parent’s call.

Therefore, traversal time is O(n).

S24N1PN.AS eleq Adejuswalg

BINARY TREES (§2.3.3)

A binary tree is a tree with the . .
following properties: @ Applications:

Each internal node has at most two = arithmetic expressions

children (proper) = decision processes
The children of a node are an = Searching
ordered pair (left child comes before

right child)
We call the children of an internal
node left child and right child
Alternative recursive definition: a
binary tree is either

a tree consisting of a single node, or

a tree whose root has an ordered
pair of children, each of which is a
binary tree

S24N1PN.AS eleq Adejuswalg

ARITHMETIC EXPRESSION TREE

Binary tree associated with an arithmetic expression
Internal nodes: operators
external nodes: operands

Example: arithmetic expression tree for the
expression (2 x (a—1) + (3 x b))

S24N1PN.AS eleq Adejuswalg

DECISION TREE

Binary tree associated with a decision process
Internal nodes: questions with yes/no answer
external nodes: decisions

Example: dining decision

[Want a fast meal?]
Yes No

S24N1PN.AS eleq Adejuswalg

[How about coffee?] [On expense account?]
Yes No Yes No

PROPERTIES OF BINARY TREES

Notation # Properties:

n number of nodes me=i+1 -

e number of external s N=2—1 g
nodes _ g

i number of internal = h<i g
nodes h<(n-1)/2 g

h height e < 2h :f

h2>log, e
h>log,(n+1)-1

INORDER TRAVERSAL

oIn an inorder _ Algorithm inOrder(v)
traversal a node Is if isinternal (v)

visited after its left . .
subtree and before | _mOrder (leftChild (v))
its right subtree VISIt(v)

If isinternal (v)

INOrder (rightChild (v

SaJ 13?.615 ejeq Alejuswig|g

PRINTING ARITHMETIC EXPRESSIONS

o Specialization of an inorder
traversal

 print “(“ before traversing
left subtree

» print operand or operator
when visiting node

« print “)* after traversing right
Subtree

Algorithm printExpression(v)

if isinternal (v)
print("(")

INOrder (leftChild (v))

print(v.element ())
if isinternal (V)
INnOrder (rightChild

print (M)")

Sinpniis eleq Alejuswialg

(v

(2x(@-1))+(3 xb)

)
O

EULER TOUR TRAVERSAL

Generic traversal of a binary tree
Includes a special cases the preorder, postorder and inorder traversals
Walk around the tree and visit each node three times:
on the left (preorder)
from below (inorder)
on the right (postorder) N ,
J

\’
S24N1PN.AS eleq Adejuswalg

LINKED DATA STRUCTURE FOR REPRESENTING

Trees (§2.3.4)

A node is represented by
an object storing

Element

O «—*

Parent node

Sequence of children
nodes

190}
—t
.
[en
@]
—t
c
=
(D
n

LINKED DATA STRUCTURE FOR BINARY TREES

A node is represented
by an object storing

Element

Parent node
Left child node
Right child node

(B3

%
?
'
B

m
()
3
®
-
=
Q
iy
<
O
o]
t
Y
w
—t
)
c
o
—t
c
)
o)
»

\J
?
'
D

ARRAY-BASED REPRESENTATION OF BINARY
TREES

nodes are stored in an array

I - L0
v T L

= let rank(node) be defined as follows:
= rank(root) =1

= if node is the left child of parent(node),
rank(node) = 2*rank(parent(node))

= if node is the right child of parent(node),
rank(node) = 2*rank(parent(node))+1

AN

AN

S24N1PN.AS eleq Adejuswalg

ARRAY-BASED REPRESENTATION OF
BINARY TREES

o Space requirement

N = 2(+D/2

S24N1PN.AS eleq Adejuswalg

