
ELEMENTARY DATA STRUCTURES 

Stacks, Queues, & Lists 

Amortized analysis 

Trees 
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 The Stack ADT (Abstract 
Data Type) stores arbitrary 
objects 

 Insertions and deletions 
follow the last-in first-out 
scheme 

 Think of a spring-loaded 
plate dispenser 

 Main stack operations: 
 push(object): inserts an 

element 

 object pop(): removes and 
returns the last inserted 
element 

 Auxiliary stack 
operations: 
 object top(): returns the 

last inserted element 
without removing it 

 integer size(): returns the 
number of elements 
stored 

 boolean isEmpty(): 
indicates whether no 
elements are stored 



APPLICATIONS OF STACKS 

 Direct applications 

 Page-visited history in a Web browser 

 Undo sequence in a text editor 

 Chain of method calls in the Java Virtual Machine or 
C++ runtime environment 

 Indirect applications 

 Auxiliary data structure for algorithms 

 Component of other data structures 
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METHOD STACK IN THE JVM 

 The Java Virtual Machine (JVM) 
keeps track of the chain of 
active methods with a stack 

 When a method is called, the 
JVM pushes on the stack a 
frame containing 
 Local variables and return value 

 Program counter, keeping track of 
the statement being executed  

 When a method ends, its frame 
is popped from the stack and 
control is passed to the method 
on top of the stack 4 
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main() { 

 int i = 5; 

 foo(i); 

 } 

foo(int j) { 

 int k; 

 k = j+1; 

 bar(k); 

 } 

bar(int m) { 

 … 

 } 

bar 
  PC = 1 
  m = 6 

foo 
  PC = 3 
  j = 5 
  k = 6 

main 
  PC = 2 
  i = 5 



ARRAY-BASED STACK (§2.1.1) 
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 A simple way of 
implementing the 
Stack ADT uses an 
array 

 We add elements 
from left to right 

 A variable t keeps 
track of the index of 
the top element (size 
is t+1) 

S 
0 1 2 t 

… 

Algorithm pop(): 

 if isEmpty() then 

  throw EmptyStackException 

  else   

  t  t  1 

  return S[t + 1] 

Algorithm push(o) 

 if t = S.length  1 then 

  throw FullStackException 

  else   

  t  t + 1 

  S[t]  o 



PERFORMANCE AND LIMITATIONS 

Performance 

 Let n be the number of elements in the stack 

 The space used is O(n) 

 Each operation runs in time O(1) 

Limitations 

 The maximum size of the stack must be defined a 

priori and cannot be changed 

 Trying to push a new element into a full stack 

causes an implementation-specific exception 

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s 

6 



GROWABLE ARRAY-BASED STACK 

(§1.5) 

 In a push operation, when 
the array is full, instead of 
throwing an exception, we 
can replace the array with a 
larger one 

How large should the new 
array be? 
 incremental strategy: 

increase the size by a 
constant c 

 doubling strategy: double the 
size 
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Algorithm push(o) 

 if t = S.length  1 then 

  A  new array of 

     size … 

  for i  0 to t do 

    A[i]  S[i] 

    S  A 

 t  t + 1 

 S[t]  o 



COMPARISON OF THE 

STRATEGIES 

We compare the incremental strategy and the 

doubling strategy by analyzing the total time 

T(n) needed to perform a series of n push 

operations 

We assume that we start with an empty stack 

represented by an array of size 1 

We call amortized time of a push operation 

the average time taken by a push over the 

series of operations, i.e.,  T(n)/n 8 

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s 



ANALYSIS OF THE INCREMENTAL 

STRATEGY 

We replace the array k = n/c times 

The total time T(n) of a series of n push 
operations is proportional to 

n + c + 2c + 3c + 4c + … + kc = 

n + c(1 + 2 + 3 + … + k) = 

n + ck(k + 1)/2 

Since c is a constant, T(n) is O(n + k2), i.e., 
O(n2) 

The amortized time of a push operation is O(n) 
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DIRECT ANALYSIS OF THE DOUBLING 

STRATEGY 

We replace the array k = log2 n 
times 

The total time T(n) of a series of 
n push operations is proportional 
to 

n + 1 + 2 + 4 + 8 + …+ 2k = 

n + 2k + 1 1  = 2n 1 

T(n) is O(n) 

The amortized time of a push 
operation is O(1) 
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 Amortization: to pay of gradually by making periodic 
payments 

 Rather than focusing on each operation separately, it 
consider the running time of a series of these operations. 

 We view a computer as a coin-operated device requiring 
1 cyber-dollar for a constant amount of computing. 
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Accounting Method Analysis 
of the Doubling Strategy 

 We set up a scheme for charging operations. This is 
known as an amortization scheme. 

 The scheme must give us always enough money to 
pay for the actual cost of the operation. 

 The total cost of the series of operations is no more 
than the total amount charged. 

(amortized time)  (total $ charged) / (# operations) 



AMORTIZATION SCHEME FOR THE 

DOUBLING STRATEGY 

 Consider again the k phases, where each phase consisting of twice as 

many pushes as the one before. 
 It costs one cyber-dollar for to push one element, excluding the growth of the array. 

 Growing the array from k to 2k costs k cyber-dollars for copying elements. 

 At the end of a phase we must have saved enough to pay for the array-

growing push of the next phase. 

 At the end of phase i we want to have saved i cyber-dollars, to pay for the 

array growth for the beginning of the next phase. 

E
le

m
e
n
ta

ry
 D

a
ta

 S
tru

ctu
re

s 

12 

0 2 4 5 6 7 3 1 

$ $ $ $ 

$ $ $ $ 

0 2 4 5 6 7 8 9 11 3 10 12 13 14 15 1 

$ 

$ 

•  We charge $3 for a push. The $2 saved for a regular push are “stored” 

in the second half of the array. Thus, we will have 2(i/2)=i cyber-dollars 
saved at then end of phase i. 
• Therefore, each push runs in O(1) amortized time; n pushes run in O(n) 
time. 



THE QUEUE ADT (§2.1.2) 
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 The Queue ADT stores arbitrary 

objects 

 Insertions and deletions follow 

the first-in first-out scheme 

 Insertions are at the rear of the 

queue and removals are at the 

front of the queue 

 Main queue operations: 

 enqueue(object): inserts an 

element at the end of the queue 

 object dequeue(): removes and 

returns the element at the front 

of the queue 

 Auxiliary queue 
operations: 
 object front(): returns the 

element at the front without 
removing it 

 integer size(): returns the 
number of elements stored 

 boolean isEmpty(): indicates 
whether no elements are 
stored 

 Exceptions 
 Attempting the execution of 

dequeue or front on an 
empty queue throws an 
EmptyQueueException 



APPLICATIONS OF QUEUES 

 Direct applications 

 Waiting lines 

 Access to shared resources (e.g., printer) 

 Multiprogramming 

 Indirect applications 

 Auxiliary data structure for algorithms 

 Component of other data structures 
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ARRAY-BASED QUEUE 
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 Use an array of size N in a circular fashion 

 Two variables keep track of the front and rear 
f  index of the front element 

r index immediately past the rear element 

 Array location r is kept empty 

Q 

0 1 2 r f 

normal configuration 

Q 

0 1 2 f r 

wrapped-around configuration 



QUEUE OPERATIONS 

We use the 

modulo operator 

(remainder of 

division) 
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Algorithm size() 

 return (N  f + r) mod N 

 

Algorithm isEmpty() 

 return (f = r) 

Q 

0 1 2 r f 

Q 

0 1 2 f r 



QUEUE OPERATIONS (CONT.) 

 Operation enqueue 
throws an exception if 
the array is full 

 This exception is 
implementation-
dependent 

17 
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Algorithm enqueue(o) 

 if size() = N  1 then 

  throw FullQueueException 

  else   

  Q[r]  o 

  r  (r + 1) mod N 

Q 

0 1 2 r f 

Q 

0 1 2 f r 



QUEUE OPERATIONS (CONT.) 

 Operation dequeue 
throws an exception if 
the queue is empty 

 This exception is 
specified in the queue 
ADT 
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Algorithm dequeue() 

 if isEmpty() then 

  throw EmptyQueueException 

  else 

  o  Q[f] 

  f  (f + 1) mod N 

  return o 

Q 

0 1 2 r f 

Q 

0 1 2 f r 



GROWABLE ARRAY-BASED QUEUE 

 In an enqueue operation, when the array is 

full, instead of throwing an exception, we 

can replace the array with a larger one 

Similar to what we did for an array-based 

stack 

The enqueue operation has amortized 

running time  

 O(n) with the incremental strategy  

 O(1) with the doubling strategy 
19 
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SINGLY LINKED LIST 

 A singly linked list is a 
concrete data structure 
consisting of a sequence 
of nodes 

 Each node stores 
 element 

 link to the next node 
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QUEUE WITH A SINGLY LINKED LIST 

 We can implement a queue with a singly linked list 

 The front element is stored at the first node 

 The rear element is stored at the last node 

 The space used is O(n) and each operation of the 

Queue ADT takes O(1) time 
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LIST ADT (§2.2.2) 
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 The List ADT models a 

sequence of positions 

storing arbitrary objects 

 It allows for insertion 

and removal in the 

“middle”  

 Query methods: 

 isFirst(p), isLast(p) 

Accessor methods: 

 first(), last() 

 before(p), after(p) 

 Update methods: 

 replaceElement(p, o), 

swapElements(p, q)  

 insertBefore(p, o), 

insertAfter(p, o), 

 insertFirst(o), 

insertLast(o) 

 remove(p) 



DOUBLY LINKED LIST 

 A doubly linked list provides a natural 

implementation of the List ADT 

 Nodes implement Position and store: 

 element 

 link to the previous node 

 link to the next node 

 Special trailer and header nodes 
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LIST ADT 
 How about array-based List? 

24 
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TREES (§2.3) 

 In computer science, a 

tree is an abstract model 

of a hierarchical structure 

 A tree consists of nodes 

with a parent-child 

relation 

 Applications: 

 Organization charts 

 File systems 

 Programming 

environments 
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Computers”R”Us 

Sales R&D Manufacturing 

Laptops Desktops US International 

Europe Asia Canada 



TREE TERMINOLOGY 

 Root: node without parent (A) 

 Internal node: node with at least one 
child (A, B, C, F) 

 External node (a.k.a. leaf ): node 
without children (E, I, J, K, G, H, D) 

 Ancestors of a node: parent, 
grandparent, grand-grandparent, 
etc. 

 Depth of a node: number of 
ancestors 

 Height of a tree: maximum depth of 
any node (3) 

 Descendant of a node: child, 
grandchild, grand-grandchild, etc. 
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G H E F 

I J K 

Subtree: tree consisting of 
a node and its 
descendants 



TREE ADT (§2.3.1) 
 Generic methods: 

 integer size() 

 boolean isEmpty() 

 objectIterator elements() 

 positionIterator positions() 

 Accessor methods: 

 position root() 

 position parent(p) 

 positionIterator children(p) 
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Query methods: 

 boolean isInternal(p) 

 boolean isExternal(p) 

 boolean isRoot(p) 

Update methods: 

 swapElements(p, q) 

 object replaceElement(p, o) 

Additional update methods 
may be defined by data 
structures implementing the 
Tree ADT 



PREORDER TRAVERSAL (§2.3.2) 

 A traversal visits the nodes of a 

tree in a systematic manner 

 In a preorder traversal, a node is 

visited before its descendants  

 Application: print a structured 

document 
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Make Money Fast! 

1. Motivations References 2. Methods 

2.1 Stock 
Fraud 

2.2 Ponzi 
Scheme 

1.1 Greed 1.2 Avidity 
2.3 Bank 
Robbery 

1 

2 

3 

5 

4 
6 7 8 

9 

Algorithm preOrder(v) 

visit(v) 

for each child w of v 

 preorder (w) 



POSTORDER TRAVERSAL (§2.3.2) 
 In a postorder traversal, a node is 

visited after its descendants 

 Application: compute space used 
by files in a directory and its 
subdirectories 
 The directory itself 

 Its children directories 

 The files 
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Algorithm postOrder(v) 

for each child w of v 

 postOrder (w) 

visit(v) 

cs16/ 

homeworks/ 
todo.txt 

1K 
programs/ 

DDR.java 
10K 

Stocks.java 
25K 

h1c.doc 
3K 

h1nc.doc 
2K 

Robot.java 
20K 

9 

3 

1 

7 

2 4 5 6 

8 



AMORTIZED ANALYSIS OF TREE 

TRAVERSAL 

Time taken in preorder or postorder traversal 

of an n-node tree is proportional to the sum, 

taken over each node v in the tree, of the time 

needed for the recursive call for v. 

 The call for v costs $(cv + 1), where cv is the number 

of children of v 

 For the call for v, charge one cyber-dollar to v and 

charge one cyber-dollar to each child of v. 

 Each node (except the root) gets charged twice: 

once for its own call and once for its parent’s call. 

 Therefore, traversal time is O(n). 
30 
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BINARY TREES (§2.3.3) 

 A binary tree is a tree with the 
following properties: 
 Each internal node has at most two 

children (proper) 

 The children of a node are an 
ordered pair (left child comes before 
right child) 

 We call the children of an internal 
node left child and right child 

 Alternative recursive definition: a 
binary tree is either 
 a tree consisting of a single node, or 

 a tree whose root has an ordered 
pair of children, each of which is a 
binary tree 
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Applications: 
 arithmetic expressions 

 decision processes 

 searching 

A 

B C 

F G D E 

H I 



ARITHMETIC EXPRESSION TREE 

 Binary tree associated with an arithmetic expression 
 internal nodes: operators 

 external nodes: operands 

 Example: arithmetic expression tree for the 
expression (2  (a  1) + (3  b)) 
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 2 

a 1 

3 b 



DECISION TREE 

 Binary tree associated with a decision process 

 internal nodes: questions with yes/no answer 

 external nodes: decisions 

 Example: dining decision 
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Want a fast meal? 

How about coffee? On expense account? 

Starbucks In ‘N Out Antoine's Denny’s 

Yes No 

Yes No Yes No 



PROPERTIES OF BINARY TREES 

 Notation 

n number of nodes 

e number of external 

nodes 

i number of internal 

nodes 

h height 
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Properties: 

 e = i + 1 

 n = 2e  1 

 h  i 

 h  (n  1)/2 

 e  2h 

 h  log2 e 

 h  log2 (n + 1)  1 

 



INORDER TRAVERSAL 

 In an inorder 
traversal a node is 
visited after its left 
subtree and before 
its right subtree 
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Algorithm inOrder(v) 

if isInternal (v) 

inOrder (leftChild (v)) 

visit(v) 

if isInternal (v) 

inOrder (rightChild (v)) 

3 

1 

2 

5 

6 

7 9 

8 

4 



PRINTING ARITHMETIC EXPRESSIONS 

 Specialization of an inorder 
traversal 
 print “(“ before traversing 

left subtree 

 print operand or operator 
when visiting node 

 print “)“ after traversing right 
subtree 

36 
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Algorithm printExpression(v) 

if isInternal (v) 
 print(“(’’) 

inOrder (leftChild (v)) 

print(v.element ()) 

if isInternal (v) 

inOrder (rightChild (v)) 

 print (“)’’) 

+ 

  

 2 

a 1 

3 b 
((2  (a  1)) + (3  b)) 



EULER TOUR TRAVERSAL 

 Generic traversal of a binary tree 

 Includes a special cases the preorder, postorder and inorder traversals 

 Walk around the tree and visit each node three times: 

 on the left (preorder) 

 from below (inorder) 

 on the right (postorder) 
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LINKED DATA STRUCTURE FOR REPRESENTING 

TREES (§2.3.4) 

 A node is represented by 
an object storing 

 Element 

 Parent node 

 Sequence of children 
nodes 
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LINKED DATA STRUCTURE FOR BINARY TREES 

 A node is represented 

by an object storing 

 Element 

 Parent node 

 Left child node 

 Right child node 
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ARRAY-BASED REPRESENTATION OF BINARY 

TREES 

nodes are stored in an array 
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… 

 let rank(node) be defined as follows: 

 rank(root) = 1 

 if node is the left child of parent(node), 

 rank(node) = 2*rank(parent(node)) 

 if node is the right child of parent(node), 

 rank(node) = 2*rank(parent(node))+1 

1 

2 3 

6 7 4 5 

10 11 

A 

H G 

F E 

D 

C 

B 

J 



ARRAY-BASED REPRESENTATION OF 

BINARY TREES 

 Space requirement 
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