
 BASIC CONCEPTS 

Overview: System Life Cycle 

Algorithm Specification 

Data Abstraction 

Performance Analysis 

Performance Measurement 



DATA STRUCTURES 

 What is the "Data Structure" ? 

 Ways to represent data 

 Why data structure ? 

 To design and implement large-scale computer system 

 Have proven correct algorithms 

 The art of programming 

 How to master in data structure ? 

 practice, discuss, and think 



SYSTEM LIFE CYCLE 

 Summary 

 R A D R C V 

 Requirements 

 What inputs, functions, and outputs 

 Analysis 

 Break the problem down into manageable pieces 

 Top-down approach 

 Bottom-up approach 



SYSTEM LIFE CYCLE(CONT.) 

 Design 

 Create abstract data types and the algorithm 

specifications, language independent 

 Refinement and Coding 

 Determining data structures and algorithms 

 Verification 

 Developing correctness proofs, testing the program, and 

removing errors 



VERIFICATION 

 Correctness proofs 

 Prove program mathematically 

 time-consuming and difficult to develop for large system 

 Testing 

 Verify that every piece of code runs correctly 

 provide data including all possible scenarios 

 Error removal 

 Guarantee no new errors generated 

 Notes 

 Select a proven correct algorithm is important 

 Initial tests focus on verifying that a program runs correctly, 

then reduce the running time 



CHAPTER 1 BASIC CONCEPTS 

 Overview: System Life Cycle 

 Algorithm Specification 

 Data Abstraction 

 Performance Analysis 

 Performance Measurement 



ALGORITHM SPECIFICATION 

 Definition 

 An algorithm is a finite set of instructions that, if followed, 

accomplishes a particular task. In addition, all algorithms 

must satisfy the following criteria: 

(1)Input. There are zero or more quantities that are externally 

supplied. 

(2)Output. At least one quantity is produced. 

(3)Definiteness. Each instruction is clear and unambiguous. 

(4)Finiteness. If we trace out the instructions of an algorithm, 

then for all cases, the algorithm terminates after a finite 

number of steps. 

(5)Effectiveness. Every instruction must be basic enough to 

be carried out, in principle, by a person using only pencil 

and paper. It is not enough that each operation be definite 

as in (3); it also must be feasible. 



DESCRIBING ALGORITHMS 

 Natural language 

 English, Chinese 

 Instructions must be definite and effectiveness 

 Graphic representation 

 Flowchart 

 work well only if the algorithm is small and simple 

 Pseudo language 

 Readable 

 Instructions must be definite and effectiveness 

 Combining English and C++ 

 In this text 



TRANSLATING A PROBLEM INTO AN 

ALGORITHM 

 Problem 

 Devise a program that sorts a set of n>= 1 integers 

 Step I - Concept 

 From those integers that are currently unsorted, find the 

smallest and place it next in the sorted list 

 Step II - Algorithm 

 for (i= 0; i< n; i++){ 

     Examine list[i] to list[n-1] and suppose that the smallest 

integer is list[min]; 

     Interchange list[i] and list[min]; 

   } 



TRANSLATING A PROBLEM INTO AN 

ALGORITHM(CONT.) 
 Step III - Coding 

void sort(int *a, int n) 

{ 

    for (i= 0; i< n; i++) 

    { 

    int j= i; 

    for (int k= i+1; k< n; k++){ 

        if (a[k ]< a[ j]) j= k; 

    int temp=a[i]; a[i]=a[ j]; a[ j]=temp; 

   } 

} 



CORRECTNESS PROOF 

 Theorem 

 Function sort(a, n) correctly sorts a set of n>= 1 integers. 

The result remains in a[0], ..., a[n-1] such that a[0]<= 

a[1]<=...<=a[n-1]. 

 Proof: 

For i= q, following the execution of line 6-11, we have 

a[q]<= a[r], q< r< =n-1. 

For i> q, observing, a[0], ..., a[q] are unchanged. 

Hence, increasing i, for i= n-2, we have  

a[0]<= a[1]<= ...<=a[n-1] 



RECURSIVE ALGORITHMS 

 Direct recursion 

 Functions call themselves 

 Indirect recursion 

 Functions call other functions that invoke the calling 
function again 

 When is recursion an appropriate mechanism? 

 The problem itself is defined recursively 

 Statements: if-else and while can be written recursively 

 Art of programming 

 Why recursive algorithms ? 

 Powerful, express an complex process very clearly 



RECURSIVE IMPLEMENTATION OF BINARY 

SEARCH 
int binsearch(int list[], int searchnum, int left, int right) 

{// search list[0]<= list[1]<=...<=list[n-1] for searchnum 

int middle; 

 while (left<= right){ 

   middle= (left+ right)/2; 

   switch(compare(list[middle], searchnum)){ 

     case -1: left= middle+ 1; 

 break; 

     case 0: return middle; 

     case 1: right= middle- 1; break; 

   } } 

 return -1;} 

int compare(int x, int y) 

{ 

  if (x< y) return -1; 

  else if (x== y) return 0; 

  else return 1; 

} 



RECURSIVE IMPLEMENTATION OF BINARY 

SEARCH 

int binsearch(int list[], int searchnum, int left, int right) 

{// search list[0]<= list[1]<=...<=list[n-1] for searchnum 

int middle; 

 while (left<= right){ 

   middle= (left+ right)/2; 

   switch(compare(list[middle], searchnum)){ 

     case -1:return binsearch(list, searchnum, middle+1, right); 

     case 0: return middle; 

     case 1: return binsearch(list, searchnum, left, middle- 1); 

   } 

 } 

 return -1; 

} 
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DATA ABSTRACTION 

 Types of data 

 All programming language provide at least minimal set 

of predefined data type, plus user defined types 

 Data types of C 

 Char, int, float, and double 

 may be modified by short, long, and unsigned 

 Array, struct, and pointer 



DATA TYPE 

 Definition 

 A data type is a collection of objects and a set of 
operations that act on those objects 

 Example of "int" 

 Objects: 0, +1, -1, ..., Int_Max, Int_Min 

 Operations: arithmetic(+, -, *, /, and %), 
testing(equality/inequality), assigns, functions 

 Define operations 

 Its name, possible arguments and results must be 
specified 

 The design strategy for representation of objects 

 Transparent to the user 



ABSTRACT DATA TYPE 

 Definition 

 An abstract data type(ADT) is a data type that is organized 

in such a way that the specification of the objects and the 

specification of the operations on the objects is separated 

from the representation of the objects and the implementation 

of the operation.# 

 Why abstract data type ? 

 implementation-independent 



CLASSIFYING THE FUNCTIONS OF A DATA 

TYPE 

 Creator/constructor: 

 Create a new instance of the designated type 

 Transformers 

 Also create an instance of the designated type by using 

one or more other instances 

 Observers/reporters 

 Provide information about an instance of the type, but 

they do not change the instance 

 Notes 

 An ADT definition will include at least one function from 

each of these three categories 



AN EXAMPLE OF THE ADT 
structure Natural_Number is 

  objects: an ordered subrange of the integers starting at zero and         

'      ending at the maximum integer (INT_MAX) on the computer 

  functions: 

    for all x, y is Nat_Number, TRUE, FALSE is Boolean and where  .   

+, -, <, and == are the usual integer operations 

   Nat_NoZero()  ::= 0 

   Boolean Is_Zero(x) ::= if (x) return FALSE 

   Nat_No Add(x, y) ::= if ((x+y)<= INT_MAX) return x+ y 

        else return INT_MAX 

   Boolean Equal(x, y) ::= if (x== y) return TRUE 

        else return FALSE 

   Nat_No Successor(x) ::= if (x== INT_MAX) return x 

        else return x+ 1 

   Nat_No Subtract(x, y) ::= if (x< y) return 0 

        else return x-y 

end Natural_Number 
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PERFORMANCE ANALYSIS 

 Performance evaluation 

 Performance analysis  

 Performance measurement 

 Performance analysis - prior 

 an important branch of CS, complexity theory 

 estimate time and space 

 machine independent 

 Performance measurement -posterior 

 The actual time and space requirements 

 machine dependent 



PERFORMANCE ANALYSIS(CONT.) 

 Space and time 

 Does the program efficiently use primary and secondary 

storage? 

 Is the program's running time acceptable for the task?

  

 Evaluate a program generally 

 Does the program meet the original specifications of the 

task? 

 Does it work correctly? 

 Does the program contain documentation that show how 

to use it and how it works? 

 Does the program effectively use functions to create 

logical units? 

 Is the program's code readable? 



PERFORMANCE ANALYSIS(CONT.) 

 Evaluate a program 

 MWGWRERE 

 Meet specifications, Work correctly,  

 Good user-interface, Well-documentation, 

 Readable, Effectively use functions,  

 Running time acceptable, Efficiently use space 

 How to achieve them? 

 Good programming style, experience, and practice 

 Discuss and think 



SPACE COMPLEXITY 

 Definition 

 The space complexity of a program is the amount of 
memory that it needs to run to completion 

 The space needed is the sum of  

 Fixed space and Variable space 

 Fixed space 

 Includes the instructions, variables, and constants 

 Independent of the number and size of I/O 

 Variable space  

 Includes dynamic allocation, functions' recursion 

 Total space of any program  

 S(P)= c+ Sp(Instance) 



EXAMPLES OF EVALUATING SPACE 

COMPLEXITY float abc(float a, float b, float c) 

{ 

  return a+b+b*c+(a+b-c)/(a+b)+4.00; 

} 

Sabc(I)= 0 

float sum(float list[], int n) 

{ 

 float fTmpSum= 0; 

 int i; 

 for (i= 0; i< n; i++) 

   fTmpSum+= list[i]; 

 return fTmpSum; 

} 

Ssum(I)= Ssum (n)= 0 

float rsum(float list[], int n) 

{ 

  if (n) return rsum(list, n-1)+ list[n-1]; 

  return 0; 

} 

Srsum (n)= 4*n 

parameter:float(list[]) 1 

parameter:integer(n) 1 

return address  1 

return value                  1 



TIME COMPLEXITY 
Definition 

 The time complexity, T(p), taken by a program P is the sum of the 
compile time and the run time  

Total time 
 T(P)= compile time + run (or execution) time 

           = c + tp(instance characteristics) 

       Compile time does not depend on the instance characteristics 

How to evaluate? 
 Use the system clock 

 Number of steps performed 

machine-independent 

Definition of a program step 
 A program step is a syntactically or semantically meaningful program 

segment whose execution time is independent of the instance 
characteristics 

(10 additions can be one step, 100 multiplications can also be one step) 

(p33~p35 有計算C++ 語法之 steps 之概述, 原則是一個表示式一步) 



EXAMPLES OF DETERMINING STEPS 
 the first method: count by a program 

float sum(float list[], int n) 

{ 

  float tempsum= 0; count++; /* for assignment */ 

  int i; 

  for(i= 0; i< n; i++) { 

    count++; /* for the for loop */ 

    tempsum+= list[i]; count++; /* for assignment 

*/ 

  } 

  count++; /* last execution of for */ 

  count++; /* for return */ 

  return tempsum; 

} 

float sum(float list[], int n) 

{ 

  float tempsum= 0 

  int i; 

  for (i=0; i< n; i++) 

    count+= 2; 

  count+= 3; 

  return 0; 

} 

2n+ 3 



EXAMPLES OF DETERMINING STEPS(CONT.) 

float rsum(float list[], int n) 

{ 

  count ++;  /* for if condition  */ 

  if (n) { 

    count++; /* for return and rsum invocation */ 

    return rsum(list, n-1)+ list[n-1]; 

  } 

  count++; //return 

  return list[0]; 

} 

2n+ 2 

void add(int a[][MaxSize], int b[][MaxSize], 

  int c[][MaxSize], int rows, int cols) 

{ 

  int i, j; 

  for (i=0; i< rows; i++) 

    for (j=0; j< cols; j++) 

      c[i][j]= a[i][j] + b[i][j]; 

  } 

2rows*cols+ 2rows+ 1 

trsum(0) = 2 

trsum(n) = 2 + trsum(n-1) 

           = 2 + 2 + trsum(n-2) 

           = 2*2 + trsum(n-2) 

           = … 

           = 2n + trsum(0)= 2n+2  

p.39, program 1.19 

自行計算 



EXAMPLES OF DETERMINING STEPS(CONT.) 

Statement   s/e Frequency Total Steps 

 

void add(int a[][MaxSize], .  .  . 0 0  0 

{    0 0  0 

  int i, j;    0 0  0 

  for (i=0; i< rows; i++)  1 rows+ 1  rows+ 1 

    for (j=0; j< cols; j++)  1 rows*(cols+1) rows*cols+ rows 

      c[i][j]= a[i][j] + b[i][j];  1 rows*cols rows*cols 

  }    0 0  0 

 

Total            2rows*cols+2rows+1 

 The second method: build a table to count 
       s/e: steps per execution 

       frequency: total numbers of times each statements is executed 

 



REMARKS OF TIME COMPLEXITY 
Difficulty: the time complexity is not dependent solely 

on the number of inputs or outputs 

To determine the step count 
 Best case, Worst case, and Average 

Example 

int binsearch(int list[], int searchnum, int left, int right) 

{// search list[0]<= list[1]<=...<=list[n-1] for searchnum 

int middle; 

 while (left<= right){ 

   middle= (left+ right)/2; 

   switch(compare(list[middle], searchnum)){ 

     case -1: left= middle+ 1; 

 break; 

     case 0: return middle; 

     case 1: right= middle- 1; 

   } } 

 return -1;} 



ASYMPTOTIC NOTATION(O, , ) 

 motivation 
 Target: Compare the time complexity of two programs that 

computing the same function and predict the growth in run 
time as instance characteristics change 

 Determining the exact step count is difficult task  

 Not very useful for comparative purpose 

 ex: C1n2+C2n <= C3n for n <= 98, (C1=1, C2=2, C3=100) 

        C1n2+C2n > C3n for n > 98, 

 Determining the exact step count usually not worth(can not 
get exact run time) 

 Asymptotic notation 
 Big "oh“ O 

 upper bound(current trend) 

 Omega  

 lower bound 

 Theta  

 upper and lower bound 



ASYMPTOTIC NOTATION O 

 Definition of Big "oh" 

 f(n)= O(g((n)) iff there exist positive constants c and n0 
such that f(n)<= cg(n) for all n, n>= n0 

 Examples 
 3n+ 2= O(n) as 3n+ 2<= 4n for all n>= 2 

 10n2+ 4n+ 2= O(n2) as 10n2+ 4n+ 2<= 11n2 for n>= 5 

 3n+2<> O(1), 10n2+ 4n+ 2<> O(n) 

 Remarks 

 g(n) is the least upper bound 
 n=O(n2)=O(n2.5)= O(n3)= O(2n) 

 O(1): constant, O(n): linear, O(n2): quadratic, O(n3): cubic, 
and O(2n): exponential 



ASYMPTOTIC NOTATION O (CONT.) 
 Remarks on "=" 

 O(g(n))= f(n) is meaningless 

 "=" as "is" and not as "equals" 

 Theorem 

 If f(n)= amnm+...+ a1n+ a0, then f(n)= O(nm) 

 Proof: 
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ASYMPTOTIC NOTATION  
 Definition 

 f(n)= (g(n)) iff there exist positive constants c and n0 such 
that f(n)>= cg(n) for all n, n>= n0 

 Examples 
 3n+ 2= (n) as 3n+ 2>= 3n for n>= 1 

 10n2+ 4n+ 2= (n2) as 10n2+4n+ 2>= n2 for n>= 1 

 6*2n+ n2= (2n) as 6*2n+ n2 >= 2n for n>= 1 

 Remarks 

 The largest lower bound 
 3n+3= (1), 10n2+4n+2= (n); 6*2n+ n2= (n100) 

 Theorem 

 If f(n)= amnm+ ...+ a1
n+ a0 and am> 0, then f(n)= (nm) 



ASYMPTOTIC NOTATION  

 Definition 

 f(n)= (g(n)) iff there exist positive constants c1, c2, and n0 
such that c1g(n)<= f(n) <= c2g(n) for all n, n>= n0 

 Examples 
 3n+2=(n) as 3n+2>=3n for n>1 and 3n+2<=4n for all n>= 2 

 10n2+ 4n+ 2=  (n2); 6*2n+n2= (2n) 

 Remarks 

 Both an upper and lower bound 

 3n+2<>(1); 10n2+4n+ 2<> (n) 

 Theorem 

 If f(n)= amnm+ ... +a1n+ a0 and am> 0, then f(n)= (nm) 



EXAMPLE OF TIME COMPLEXITY ANALYSIS 

Statement   Asymptotic complexity 

 

void add(int a[][Max.......) 0 

{    0 

  int i, j;   0 

  for(i= 0; i< rows; i++) (rows) 

    for(j=0; j< cols; j++) (rows*cols) 

     c[i][j]= a[i][j]+ b[i][j]; (rows*cols) 

}    0 

 

Total    (rows*cols) 

 



EXAMPLE OF TIME COMPLEXITY ANALYSIS(CONT.) 

int binsearch(int list[], int .....) 

{  int middle; 

 while (left<= right){    

   middle= (left+ right)/2; 

   switch(compare(list[middle], 

searchnum)){ 

     case -1: left= middle+ 1; 

 break; 

     case 0: return middle; 

     case 1: right= middle- 1; 

   } 

 } 

 return -1; 

} 

worst case (log n) 

The more global approach to count steps:  

        focus the variation of instance characterics. 



EXAMPLE OF TIME COMPLEXITY ANALYSIS(CONT.) 

void perm(char *a, int k, int n) 

{//generate all the 排列 of 

// a[k],…a[n-1] 

char temp; 

 if (k == n-1){ 

    for(int i= 0; i<=n; i++) 

 cout << a[i]<<“ ”; 

    cout << endl; 

  } 

else { 

 for(i= k; i< n; i++){ 

  temp=a[k];a[k]=a[i];a[i]=temp; 

  perm(a, k+1, n); 

  temp=a[k];a[k]=a[i];a[i]=temp; 

    } 

  } 

} 

k= n-1, (n) 

k< n-1, else  

   for loop, n-k times 

   each call Tperm(k+1, n-1) 

   hence, (Tperm (k+1, n-1)) 

so, Tperm (k, n-1)= ((n-k)(Tperm (k+1, n-1))) 

  

Using the substitution, we have  

Tperm (0, n-1)= (n(n!)), n>= 1    



EXAMPLE OF TIME COMPLEXITY 

ANALYSIS(CONT.) 
 Magic square 

 An n-by-n matrix of the integers from 1 to n2 such that the 
sum of each row and column and the two major diagonals 
is the same 

 Example, n= 5(n must be odd) 

15 8 1 24 17 

16 14 7 5 23 

22 20 13 6 4 

3 21 19 12 10 

9 2 25 18 11 



MAGIC SQUARE (CONT.) 
 Coxeter has given the simple rule 

 Put a one in the middle box of the top row.  

 Go up and left assigning numbers in increasing order to 

empty boxes.  

 If your move causes you to jump off the square, figure out 

where you would be if you landed on a box on the opposite 

side of the square. 

 Continue with this box. 

 If a box is occupied, go down instead of up and continue. 



MAGIC SQUARE (CONT.) 
procedure MAGIC(square, n) 

// for n odd create a magic square which is declared as an array 

// square(0: n-1, 0: n-1) 

// (i, j) is a square position. 2<= key <= n2 is integer valued 

if n is even the [print("input error"); stop] 

SQUARE<- 0 

square(0, (n-1)/2)<- 1;  // store 1 in middle of first row 

key<- 2; i<- 0; j<- (n-1)/2  // i, j are current position 

while key <= n2 do 

  (k, l)<- ((i-1) mod n, (j-1)mod n)  // look up and left 

  if square(k, l) <> 0 

     then i<- (i+1) mod n  // square occupied, move down 

  else (i, j)<- (k, l)  // square (k, l) needs to be assigned 

 square(i, j)<- key    // assign it a value 

 key<- key + 1 

end 

print(n, square) // out result 

end MAGIC 



PRACTICAL COMPLEXITIES 
 Time complexity 

 Generally some function of the instance characteristics 

 Remarks on "n" 

 If Tp=(n), Tq= (n2), then we say P is faster than Q for 
"sufficiently large" n. 
 since Tp<= cn, n>= n1, and Tq<= dn2, n>= n2, 

 but cn<= dn2 for n>= c/d 

 so P is faster than Q whenever n>= max{n1, n2, d/c} 

 See Table 1.7 and Figure 1.3 

 For reasonable large n, n> 100, only program of small 
complexity, n, nlog n, n2, n3 are feasible 

 See Table 1.8 



TABLE 1.8 TIMES ON A 1 BSPS COMPUTER 

       Time for f(n) instructions on 109 instr/sec computer 

 
      n           f(n)= n  f(n)=log2n  f(n)=n2  f(n)=n3 f(n)=n4  f(n)=n10     f(n)=2n 

10 

20 

30 

40 

50 

100 

1,000 

10,000 

100,000 

1,000,000 

.01us 

.02us 

.03us 

.04us 

.05us 

.10us 

1.00us 

10.00us 

100.00us 

1.00ms 

.03us 

.09us 

.15us 

.21us 

.28us 

.66us 

0.96us 

130.03us 

1.66ms 

19.92ms 

.1us 

.4us 

.9us 

1.6us 

2.5us 

10us 

1ms 

100ms 

10s 

16.67m 

1us 

8us 

27us 

64us 

125us 

1ms 

1s 

16.67m 

11.57d 

31.71y 

10us 

160us 

810us 

2.56ms 

6.25us 

100ms 

16.67m 

115.7d 

3171y 

3*107y 

10s 

2.84hr 

6.83d 

12136d 

3.1y 

3171y 

3*1013y 

3*1023y 

3*1033y 

3*1043y 

1us 

1ms 

1s 

18.3m 

13d 

4*1013y 

32*10283y 



TABLE 1.7 FUNCTION VALUES 

                                    Instance characteristic n 

 

Time Name  1  2    4        8   16            32 

 

        1 Constant 1  1    1         1       1              1 

  log n Logarithmic 0  1    2         3        4               5 

        n Linear  1  2    4         8    16            32 

nlog n Log Linear 0  2    8       24     64          160 

      n2 Quadratic 1  4  16       64            256        1024 

      n3 Cubic  1  8  61     512          4096                 32768 

      2n Exponential 2  4  16     256        65536       4294967296 

      n! Factorial 1  2  54 40326 20922789888000  26313*1033 
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PERFORMANCE MEASUREMENT 
Obtaining the actual space and time of a program 

Using Borland C++, ‘386 at 25 MHz 

Time(hsec): returns the current time in hundredths of a sec. 

Goal: 得到測量結果的曲線圖, 並進而求得執行時間方程式 

      Step 1, 分析(g(n)), 做為起始預測 

     Step 2, write a program to test 

     -技巧1 : to time a short event, to repeat it several times   

     -技巧2 : suitable test data need to be generated 
Example:  time(start); 

                 for(b=1; b<=r[j];b++) 

                     k=seqsearch(a,n[j],0);// 被測對象 

                 time(stop); 

                 totaltime = stop –start; 

                 runtime = totaltime/r[j]; // 結果參考fig 1.5, fig1.6 



SUMMARY 

 Overview: System Life Cycle 

 Algorithm Specification 

 Definition, Description 

 Data Abstraction- ADT 

 Performance Analysis 

 Time and Space 
 O(g(n)) 

 Performance Measurement 

 Generating Test Data 

     - analyze the algorithm being tested to determine 
classes of data 


