
 BASIC CONCEPTS

Overview: System Life Cycle

Algorithm Specification

Data Abstraction

Performance Analysis

Performance Measurement

DATA STRUCTURES

 What is the "Data Structure" ?

 Ways to represent data

 Why data structure ?

 To design and implement large-scale computer system

 Have proven correct algorithms

 The art of programming

 How to master in data structure ?

 practice, discuss, and think

SYSTEM LIFE CYCLE

 Summary

 R A D R C V

 Requirements

 What inputs, functions, and outputs

 Analysis

 Break the problem down into manageable pieces

 Top-down approach

 Bottom-up approach

SYSTEM LIFE CYCLE(CONT.)

 Design

 Create abstract data types and the algorithm

specifications, language independent

 Refinement and Coding

 Determining data structures and algorithms

 Verification

 Developing correctness proofs, testing the program, and

removing errors

VERIFICATION

 Correctness proofs

 Prove program mathematically

 time-consuming and difficult to develop for large system

 Testing

 Verify that every piece of code runs correctly

 provide data including all possible scenarios

 Error removal

 Guarantee no new errors generated

 Notes

 Select a proven correct algorithm is important

 Initial tests focus on verifying that a program runs correctly,

then reduce the running time

CHAPTER 1 BASIC CONCEPTS

 Overview: System Life Cycle

 Algorithm Specification

 Data Abstraction

 Performance Analysis

 Performance Measurement

ALGORITHM SPECIFICATION

 Definition

 An algorithm is a finite set of instructions that, if followed,

accomplishes a particular task. In addition, all algorithms

must satisfy the following criteria:

(1)Input. There are zero or more quantities that are externally

supplied.

(2)Output. At least one quantity is produced.

(3)Definiteness. Each instruction is clear and unambiguous.

(4)Finiteness. If we trace out the instructions of an algorithm,

then for all cases, the algorithm terminates after a finite

number of steps.

(5)Effectiveness. Every instruction must be basic enough to

be carried out, in principle, by a person using only pencil

and paper. It is not enough that each operation be definite

as in (3); it also must be feasible.

DESCRIBING ALGORITHMS

 Natural language

 English, Chinese

 Instructions must be definite and effectiveness

 Graphic representation

 Flowchart

 work well only if the algorithm is small and simple

 Pseudo language

 Readable

 Instructions must be definite and effectiveness

 Combining English and C++

 In this text

TRANSLATING A PROBLEM INTO AN

ALGORITHM

 Problem

 Devise a program that sorts a set of n>= 1 integers

 Step I - Concept

 From those integers that are currently unsorted, find the

smallest and place it next in the sorted list

 Step II - Algorithm

 for (i= 0; i< n; i++){

 Examine list[i] to list[n-1] and suppose that the smallest

integer is list[min];

 Interchange list[i] and list[min];

 }

TRANSLATING A PROBLEM INTO AN

ALGORITHM(CONT.)
 Step III - Coding

void sort(int *a, int n)

{

 for (i= 0; i< n; i++)

 {

 int j= i;

 for (int k= i+1; k< n; k++){

 if (a[k]< a[j]) j= k;

 int temp=a[i]; a[i]=a[j]; a[j]=temp;

 }

}

CORRECTNESS PROOF

 Theorem

 Function sort(a, n) correctly sorts a set of n>= 1 integers.

The result remains in a[0], ..., a[n-1] such that a[0]<=

a[1]<=...<=a[n-1].

 Proof:

For i= q, following the execution of line 6-11, we have

a[q]<= a[r], q< r< =n-1.

For i> q, observing, a[0], ..., a[q] are unchanged.

Hence, increasing i, for i= n-2, we have

a[0]<= a[1]<= ...<=a[n-1]

RECURSIVE ALGORITHMS

 Direct recursion

 Functions call themselves

 Indirect recursion

 Functions call other functions that invoke the calling
function again

 When is recursion an appropriate mechanism?

 The problem itself is defined recursively

 Statements: if-else and while can be written recursively

 Art of programming

 Why recursive algorithms ?

 Powerful, express an complex process very clearly

RECURSIVE IMPLEMENTATION OF BINARY

SEARCH
int binsearch(int list[], int searchnum, int left, int right)

{// search list[0]<= list[1]<=...<=list[n-1] for searchnum

int middle;

 while (left<= right){

 middle= (left+ right)/2;

 switch(compare(list[middle], searchnum)){

 case -1: left= middle+ 1;

 break;

 case 0: return middle;

 case 1: right= middle- 1; break;

 } }

 return -1;}

int compare(int x, int y)

{

 if (x< y) return -1;

 else if (x== y) return 0;

 else return 1;

}

RECURSIVE IMPLEMENTATION OF BINARY

SEARCH

int binsearch(int list[], int searchnum, int left, int right)

{// search list[0]<= list[1]<=...<=list[n-1] for searchnum

int middle;

 while (left<= right){

 middle= (left+ right)/2;

 switch(compare(list[middle], searchnum)){

 case -1:return binsearch(list, searchnum, middle+1, right);

 case 0: return middle;

 case 1: return binsearch(list, searchnum, left, middle- 1);

 }

 }

 return -1;

}

CHAPTER 1 BASIC CONCEPTS

 Overview: System Life Cycle

 Algorithm Specification

 Data Abstraction

 Performance Analysis

 Performance Measurement

DATA ABSTRACTION

 Types of data

 All programming language provide at least minimal set

of predefined data type, plus user defined types

 Data types of C

 Char, int, float, and double

 may be modified by short, long, and unsigned

 Array, struct, and pointer

DATA TYPE

 Definition

 A data type is a collection of objects and a set of
operations that act on those objects

 Example of "int"

 Objects: 0, +1, -1, ..., Int_Max, Int_Min

 Operations: arithmetic(+, -, *, /, and %),
testing(equality/inequality), assigns, functions

 Define operations

 Its name, possible arguments and results must be
specified

 The design strategy for representation of objects

 Transparent to the user

ABSTRACT DATA TYPE

 Definition

 An abstract data type(ADT) is a data type that is organized

in such a way that the specification of the objects and the

specification of the operations on the objects is separated

from the representation of the objects and the implementation

of the operation.#

 Why abstract data type ?

 implementation-independent

CLASSIFYING THE FUNCTIONS OF A DATA

TYPE

 Creator/constructor:

 Create a new instance of the designated type

 Transformers

 Also create an instance of the designated type by using

one or more other instances

 Observers/reporters

 Provide information about an instance of the type, but

they do not change the instance

 Notes

 An ADT definition will include at least one function from

each of these three categories

AN EXAMPLE OF THE ADT
structure Natural_Number is

 objects: an ordered subrange of the integers starting at zero and

' ending at the maximum integer (INT_MAX) on the computer

 functions:

 for all x, y is Nat_Number, TRUE, FALSE is Boolean and where .

+, -, <, and == are the usual integer operations

 Nat_NoZero() ::= 0

 Boolean Is_Zero(x) ::= if (x) return FALSE

 Nat_No Add(x, y) ::= if ((x+y)<= INT_MAX) return x+ y

 else return INT_MAX

 Boolean Equal(x, y) ::= if (x== y) return TRUE

 else return FALSE

 Nat_No Successor(x) ::= if (x== INT_MAX) return x

 else return x+ 1

 Nat_No Subtract(x, y) ::= if (x< y) return 0

 else return x-y

end Natural_Number

CHAPTER 1 BASIC CONCEPTS

 Overview: System Life Cycle

 Algorithm Specification

 Data Abstraction

 Performance Analysis

 Performance Measurement

PERFORMANCE ANALYSIS

 Performance evaluation

 Performance analysis

 Performance measurement

 Performance analysis - prior

 an important branch of CS, complexity theory

 estimate time and space

 machine independent

 Performance measurement -posterior

 The actual time and space requirements

 machine dependent

PERFORMANCE ANALYSIS(CONT.)

 Space and time

 Does the program efficiently use primary and secondary

storage?

 Is the program's running time acceptable for the task?

 Evaluate a program generally

 Does the program meet the original specifications of the

task?

 Does it work correctly?

 Does the program contain documentation that show how

to use it and how it works?

 Does the program effectively use functions to create

logical units?

 Is the program's code readable?

PERFORMANCE ANALYSIS(CONT.)

 Evaluate a program

 MWGWRERE

 Meet specifications, Work correctly,

 Good user-interface, Well-documentation,

 Readable, Effectively use functions,

 Running time acceptable, Efficiently use space

 How to achieve them?

 Good programming style, experience, and practice

 Discuss and think

SPACE COMPLEXITY

 Definition

 The space complexity of a program is the amount of
memory that it needs to run to completion

 The space needed is the sum of

 Fixed space and Variable space

 Fixed space

 Includes the instructions, variables, and constants

 Independent of the number and size of I/O

 Variable space

 Includes dynamic allocation, functions' recursion

 Total space of any program

 S(P)= c+ Sp(Instance)

EXAMPLES OF EVALUATING SPACE

COMPLEXITY float abc(float a, float b, float c)

{

 return a+b+b*c+(a+b-c)/(a+b)+4.00;

}

Sabc(I)= 0

float sum(float list[], int n)

{

 float fTmpSum= 0;

 int i;

 for (i= 0; i< n; i++)

 fTmpSum+= list[i];

 return fTmpSum;

}

Ssum(I)= Ssum (n)= 0

float rsum(float list[], int n)

{

 if (n) return rsum(list, n-1)+ list[n-1];

 return 0;

}

Srsum (n)= 4*n

parameter:float(list[]) 1

parameter:integer(n) 1

return address 1

return value 1

TIME COMPLEXITY
Definition

 The time complexity, T(p), taken by a program P is the sum of the
compile time and the run time

Total time
 T(P)= compile time + run (or execution) time

 = c + tp(instance characteristics)

 Compile time does not depend on the instance characteristics

How to evaluate?
 Use the system clock

 Number of steps performed

machine-independent

Definition of a program step
 A program step is a syntactically or semantically meaningful program

segment whose execution time is independent of the instance
characteristics

(10 additions can be one step, 100 multiplications can also be one step)

(p33~p35 有計算C++ 語法之 steps 之概述, 原則是一個表示式一步)

EXAMPLES OF DETERMINING STEPS
 the first method: count by a program

float sum(float list[], int n)

{

 float tempsum= 0; count++; /* for assignment */

 int i;

 for(i= 0; i< n; i++) {

 count++; /* for the for loop */

 tempsum+= list[i]; count++; /* for assignment

*/

 }

 count++; /* last execution of for */

 count++; /* for return */

 return tempsum;

}

float sum(float list[], int n)

{

 float tempsum= 0

 int i;

 for (i=0; i< n; i++)

 count+= 2;

 count+= 3;

 return 0;

}

2n+ 3

EXAMPLES OF DETERMINING STEPS(CONT.)

float rsum(float list[], int n)

{

 count ++; /* for if condition */

 if (n) {

 count++; /* for return and rsum invocation */

 return rsum(list, n-1)+ list[n-1];

 }

 count++; //return

 return list[0];

}

2n+ 2

void add(int a[][MaxSize], int b[][MaxSize],

 int c[][MaxSize], int rows, int cols)

{

 int i, j;

 for (i=0; i< rows; i++)

 for (j=0; j< cols; j++)

 c[i][j]= a[i][j] + b[i][j];

 }

2rows*cols+ 2rows+ 1

trsum(0) = 2

trsum(n) = 2 + trsum(n-1)

 = 2 + 2 + trsum(n-2)

 = 2*2 + trsum(n-2)

 = …

 = 2n + trsum(0)= 2n+2

p.39, program 1.19

自行計算

EXAMPLES OF DETERMINING STEPS(CONT.)

Statement s/e Frequency Total Steps

void add(int a[][MaxSize], . . . 0 0 0

{ 0 0 0

 int i, j; 0 0 0

 for (i=0; i< rows; i++) 1 rows+ 1 rows+ 1

 for (j=0; j< cols; j++) 1 rows*(cols+1) rows*cols+ rows

 c[i][j]= a[i][j] + b[i][j]; 1 rows*cols rows*cols

 } 0 0 0

Total 2rows*cols+2rows+1

 The second method: build a table to count
 s/e: steps per execution

 frequency: total numbers of times each statements is executed

REMARKS OF TIME COMPLEXITY
Difficulty: the time complexity is not dependent solely

on the number of inputs or outputs

To determine the step count
 Best case, Worst case, and Average

Example

int binsearch(int list[], int searchnum, int left, int right)

{// search list[0]<= list[1]<=...<=list[n-1] for searchnum

int middle;

 while (left<= right){

 middle= (left+ right)/2;

 switch(compare(list[middle], searchnum)){

 case -1: left= middle+ 1;

 break;

 case 0: return middle;

 case 1: right= middle- 1;

 } }

 return -1;}

ASYMPTOTIC NOTATION(O, , )

 motivation
 Target: Compare the time complexity of two programs that

computing the same function and predict the growth in run
time as instance characteristics change

 Determining the exact step count is difficult task

 Not very useful for comparative purpose

 ex: C1n2+C2n <= C3n for n <= 98, (C1=1, C2=2, C3=100)

 C1n2+C2n > C3n for n > 98,

 Determining the exact step count usually not worth(can not
get exact run time)

 Asymptotic notation
 Big "oh“ O

 upper bound(current trend)

 Omega 

 lower bound

 Theta 

 upper and lower bound

ASYMPTOTIC NOTATION O

 Definition of Big "oh"

 f(n)= O(g((n)) iff there exist positive constants c and n0
such that f(n)<= cg(n) for all n, n>= n0

 Examples
 3n+ 2= O(n) as 3n+ 2<= 4n for all n>= 2

 10n2+ 4n+ 2= O(n2) as 10n2+ 4n+ 2<= 11n2 for n>= 5

 3n+2<> O(1), 10n2+ 4n+ 2<> O(n)

 Remarks

 g(n) is the least upper bound
 n=O(n2)=O(n2.5)= O(n3)= O(2n)

 O(1): constant, O(n): linear, O(n2): quadratic, O(n3): cubic,
and O(2n): exponential

ASYMPTOTIC NOTATION O (CONT.)
 Remarks on "="

 O(g(n))= f(n) is meaningless

 "=" as "is" and not as "equals"

 Theorem

 If f(n)= amnm+...+ a1n+ a0, then f(n)= O(nm)

 Proof:

1 ,

)(

0

0

0





















nforan

nan

nanf

m

i

i

m

mi
m

i

i

m

i
m

i

i

ASYMPTOTIC NOTATION 
 Definition

 f(n)= (g(n)) iff there exist positive constants c and n0 such
that f(n)>= cg(n) for all n, n>= n0

 Examples
 3n+ 2= (n) as 3n+ 2>= 3n for n>= 1

 10n2+ 4n+ 2= (n2) as 10n2+4n+ 2>= n2 for n>= 1

 6*2n+ n2= (2n) as 6*2n+ n2 >= 2n for n>= 1

 Remarks

 The largest lower bound
 3n+3= (1), 10n2+4n+2= (n); 6*2n+ n2= (n100)

 Theorem

 If f(n)= amnm+ ...+ a1
n+ a0 and am> 0, then f(n)= (nm)

ASYMPTOTIC NOTATION 

 Definition

 f(n)= (g(n)) iff there exist positive constants c1, c2, and n0
such that c1g(n)<= f(n) <= c2g(n) for all n, n>= n0

 Examples
 3n+2=(n) as 3n+2>=3n for n>1 and 3n+2<=4n for all n>= 2

 10n2+ 4n+ 2=  (n2); 6*2n+n2= (2n)

 Remarks

 Both an upper and lower bound

 3n+2<>(1); 10n2+4n+ 2<> (n)

 Theorem

 If f(n)= amnm+ ... +a1n+ a0 and am> 0, then f(n)= (nm)

EXAMPLE OF TIME COMPLEXITY ANALYSIS

Statement Asymptotic complexity

void add(int a[][Max.......) 0

{ 0

 int i, j; 0

 for(i= 0; i< rows; i++) (rows)

 for(j=0; j< cols; j++) (rows*cols)

 c[i][j]= a[i][j]+ b[i][j]; (rows*cols)

} 0

Total (rows*cols)

EXAMPLE OF TIME COMPLEXITY ANALYSIS(CONT.)

int binsearch(int list[], int)

{ int middle;

 while (left<= right){

 middle= (left+ right)/2;

 switch(compare(list[middle],

searchnum)){

 case -1: left= middle+ 1;

 break;

 case 0: return middle;

 case 1: right= middle- 1;

 }

 }

 return -1;

}

worst case (log n)

The more global approach to count steps:

 focus the variation of instance characterics.

EXAMPLE OF TIME COMPLEXITY ANALYSIS(CONT.)

void perm(char *a, int k, int n)

{//generate all the 排列 of

// a[k],…a[n-1]

char temp;

 if (k == n-1){

 for(int i= 0; i<=n; i++)

 cout << a[i]<<“ ”;

 cout << endl;

 }

else {

 for(i= k; i< n; i++){

 temp=a[k];a[k]=a[i];a[i]=temp;

 perm(a, k+1, n);

 temp=a[k];a[k]=a[i];a[i]=temp;

 }

 }

}

k= n-1, (n)

k< n-1, else

 for loop, n-k times

 each call Tperm(k+1, n-1)

 hence, (Tperm (k+1, n-1))

so, Tperm (k, n-1)= ((n-k)(Tperm (k+1, n-1)))

Using the substitution, we have

Tperm (0, n-1)= (n(n!)), n>= 1

EXAMPLE OF TIME COMPLEXITY

ANALYSIS(CONT.)
 Magic square

 An n-by-n matrix of the integers from 1 to n2 such that the
sum of each row and column and the two major diagonals
is the same

 Example, n= 5(n must be odd)

15 8 1 24 17

16 14 7 5 23

22 20 13 6 4

3 21 19 12 10

9 2 25 18 11

MAGIC SQUARE (CONT.)
 Coxeter has given the simple rule

 Put a one in the middle box of the top row.

 Go up and left assigning numbers in increasing order to

empty boxes.

 If your move causes you to jump off the square, figure out

where you would be if you landed on a box on the opposite

side of the square.

 Continue with this box.

 If a box is occupied, go down instead of up and continue.

MAGIC SQUARE (CONT.)
procedure MAGIC(square, n)

// for n odd create a magic square which is declared as an array

// square(0: n-1, 0: n-1)

// (i, j) is a square position. 2<= key <= n2 is integer valued

if n is even the [print("input error"); stop]

SQUARE<- 0

square(0, (n-1)/2)<- 1; // store 1 in middle of first row

key<- 2; i<- 0; j<- (n-1)/2 // i, j are current position

while key <= n2 do

 (k, l)<- ((i-1) mod n, (j-1)mod n) // look up and left

 if square(k, l) <> 0

 then i<- (i+1) mod n // square occupied, move down

 else (i, j)<- (k, l) // square (k, l) needs to be assigned

 square(i, j)<- key // assign it a value

 key<- key + 1

end

print(n, square) // out result

end MAGIC

PRACTICAL COMPLEXITIES
 Time complexity

 Generally some function of the instance characteristics

 Remarks on "n"

 If Tp=(n), Tq= (n2), then we say P is faster than Q for
"sufficiently large" n.
 since Tp<= cn, n>= n1, and Tq<= dn2, n>= n2,

 but cn<= dn2 for n>= c/d

 so P is faster than Q whenever n>= max{n1, n2, d/c}

 See Table 1.7 and Figure 1.3

 For reasonable large n, n> 100, only program of small
complexity, n, nlog n, n2, n3 are feasible

 See Table 1.8

TABLE 1.8 TIMES ON A 1 BSPS COMPUTER

 Time for f(n) instructions on 109 instr/sec computer

 n f(n)= n f(n)=log2n f(n)=n2 f(n)=n3 f(n)=n4 f(n)=n10 f(n)=2n

10

20

30

40

50

100

1,000

10,000

100,000

1,000,000

.01us

.02us

.03us

.04us

.05us

.10us

1.00us

10.00us

100.00us

1.00ms

.03us

.09us

.15us

.21us

.28us

.66us

0.96us

130.03us

1.66ms

19.92ms

.1us

.4us

.9us

1.6us

2.5us

10us

1ms

100ms

10s

16.67m

1us

8us

27us

64us

125us

1ms

1s

16.67m

11.57d

31.71y

10us

160us

810us

2.56ms

6.25us

100ms

16.67m

115.7d

3171y

3*107y

10s

2.84hr

6.83d

12136d

3.1y

3171y

3*1013y

3*1023y

3*1033y

3*1043y

1us

1ms

1s

18.3m

13d

4*1013y

32*10283y

TABLE 1.7 FUNCTION VALUES

 Instance characteristic n

Time Name 1 2 4 8 16 32

 1 Constant 1 1 1 1 1 1

 log n Logarithmic 0 1 2 3 4 5

 n Linear 1 2 4 8 16 32

nlog n Log Linear 0 2 8 24 64 160

 n2 Quadratic 1 4 16 64 256 1024

 n3 Cubic 1 8 61 512 4096 32768

 2n Exponential 2 4 16 256 65536 4294967296

 n! Factorial 1 2 54 40326 20922789888000 26313*1033

CHAPTER 1 BASIC CONCEPTS

 Overview: System Life Cycle

 Algorithm Specification

 Data Abstraction

 Performance Analysis

 Performance Measurement

PERFORMANCE MEASUREMENT
Obtaining the actual space and time of a program

Using Borland C++, ‘386 at 25 MHz

Time(hsec): returns the current time in hundredths of a sec.

Goal: 得到測量結果的曲線圖, 並進而求得執行時間方程式

 Step 1, 分析(g(n)), 做為起始預測

 Step 2, write a program to test

 -技巧1 : to time a short event, to repeat it several times

 -技巧2 : suitable test data need to be generated
Example: time(start);

 for(b=1; b<=r[j];b++)

 k=seqsearch(a,n[j],0);// 被測對象

 time(stop);

 totaltime = stop –start;

 runtime = totaltime/r[j]; // 結果參考fig 1.5, fig1.6

SUMMARY

 Overview: System Life Cycle

 Algorithm Specification

 Definition, Description

 Data Abstraction- ADT

 Performance Analysis

 Time and Space
 O(g(n))

 Performance Measurement

 Generating Test Data

 - analyze the algorithm being tested to determine
classes of data

