RECORDS

RDS

THIN

COR

LB

RECORD WITHIN RECORDS

Date_Type: | gay month | year
Student_Type:
name gpa
birth_day day month year
graduation_day day month year

bob isoftype Student Type
bob.birth day.month <- 6

TYPES VS. VARIABLES

TYPE Definitions

Create templates for new kinds of variables

Do not create a variable — no storage space is
allocated

Have unlimited scope

VARIABLE Declarations

Actually create storage space

Have limited scope - only module containing the
variable can “see” it

Must be based on an existing data type

DYNAMIC MEMORY AND POINTERS

DYNAMIC VS. STATIC

Static (fixed In size)

Sometimes we create data structures that
are “fixed” and don’t need to grow or
shrink.

Dynamic (change in size)
Other times, we want the ability to increase
and decrease the size of our data
structures to accommodate changing
needs.

STATIC DATA

o Static data

o
“lives” for as long as that module is active.

o

DYNAMIC DATA

Dynamic data refers to data structures which can grow
and shrink to fit changing data requirements.

We can allocate (create) additional dynamic variables
whenever we need them.

We can de-allocate (kill) dynamic variables whenever we
are done with them.

A key advantage of dynamic data is that we can always
have a exactly the number of variables required - no more,
no less.

For example, with pointer variables to connect them, we
can use dynamic data structures to create a chain of data
structures called a linked list.

NOTE

Dynamic data gives us more flexibility
Memory is still limited
But now we can use it where we need it

And we can determine that while the program is
running

Examples?
Printer Queues
Airliners
uh, everything?

LB

A VIEW OF MEMORY

LB

Heap (Dynamic Area)
(Store stuff here)

v

Stack (Static Area)
(Store stuff here)

Algorithm and Module Code
(What you wrote)

A LIST EXAMPLE

We must maintain a list of data
Sometimes we want to use only a little memory:

Sometimes we need to use more memory

Declaring variables in the standard way won'’t
work here because we don’t know how many
variables to declare

We need a way to allocate and de-allocate data
dynamically (i.e., on the fly)

THE STACK

o Recall the activation stack
» The stack can expand, but as for the data...
» Each frame contains static (fixed size) data

i

Algo varl

var2

Proc 1 this_varl_] that_varl_]

var3

The number of
variables needed
come from the
“isoftype”

statements. ‘

LB

THE STACK AND HEAP

Heap

Main this var [Z

Stack

] that_var my_num_ptr

The'heap is memory not used by the stack

Asgstack grows,
Stati¢é variables
Dynamic variabl

heap shrinks
live in the stack
es live in the heap

What kind of variable is this???

WHAT?

We know (sort of) how to get a pointer variable

my num ptr isoftype Ptr toa Num

But how do we get it to point at something?

LB

THE BUILT-IN FUNCTION NEW/()

Takes atype as a parameter
Allocates memory in the heap for the
type

Returns a pointer to that memory

my num ptr <- new (Num)
dynamic string <- new (String)
list head <- new(Node)

ACCESSING DYNAMIC DATA VIA POINTERS

Heap: Dynamic

|Main my num_ptr | | Stack: Static

When we “follow a pointer”, we say that we
dereference that pointer

The carat (#) means “dereference the pointer”
my num ptr” means “follow my_num_ptr to
wherever it points”

My num ptr”® <- 43isvalid

Ptrl isoftype Ptr toa Num
Ptr2 isoftype Ptr toa Num
5 5 Ptrl <- new (Num)
7 7 Ptrl”® <- 5
Ptr2 <- Ptrl
— Print (Ptrl”®, Ptr2”%)
Ptr2” <- 7
I Print (Ptrl”®, Ptr2”%)
Ptr I Num
Ptr
Ptr2 # I

static dynamic

A record to hold two items of data - a name
and a SSN:

Student definesa record name
name isoftype String SSN

SSN isoftype num

endrecord

And a pointer to a Student record:

current isoftype ptr toa Student
current <- new(Student)

