
RECORDS

RECORDS WITHIN RECORDS

There is nothing to prevent us from placing records inside of
records (a field within a record):

Date_Type definesa record

 day, month, year isoftype num

Endrecord

Student_Type definesa record

 name isoftype string

 gpa isoftype num

 birth_day isoftype Date_Type

 graduation_day isoftype Date_Type

endrecord

This name is now

a type which can

be used anywhere

a type such as

“Num” can be

used.

What are these called?

Types

LB

RECORD WITHIN RECORDS

Date_Type:

Student_Type:

bob isoftype Student_Type

bob.birth_day.month <- 6

 day month year

 day month year

name gpa

 day month year birth_day

graduation_day

TYPES VS. VARIABLES

 TYPE Definitions

 Create templates for new kinds of variables

 Do not create a variable – no storage space is

allocated

 Have unlimited scope

 VARIABLE Declarations

 Actually create storage space

 Have limited scope - only module containing the

variable can “see” it

 Must be based on an existing data type

DYNAMIC MEMORY AND POINTERS

DYNAMIC VS. STATIC

Static (fixed in size)

Sometimes we create data structures that

are “fixed” and don’t need to grow or

shrink.

Dynamic (change in size)

Other times, we want the ability to increase

and decrease the size of our data

structures to accommodate changing

needs.

STATIC DATA

 Static data is data declared “ahead of time.”

 It is declared in a module (or main algorithm) and

“lives” for as long as that module is active.

 If we declare more static variables than we need,

we waste space.

 If we declare fewer static variables than we need,

we are out of luck.

 Often, real world problems mean that we don’t

know how many variables to declare, as the

number needed will change over time.

DYNAMIC DATA

 Dynamic data refers to data structures which can grow

and shrink to fit changing data requirements.

 We can allocate (create) additional dynamic variables

whenever we need them.

 We can de-allocate (kill) dynamic variables whenever we

are done with them.

 A key advantage of dynamic data is that we can always

have a exactly the number of variables required - no more,

no less.

 For example, with pointer variables to connect them, we

can use dynamic data structures to create a chain of data

structures called a linked list.

NOTE

 Dynamic data gives us more flexibility

 Memory is still limited

 But now we can use it where we need it

 And we can determine that while the program is

running

LB

Examples?
 Printer Queues
 Airliners
 uh, everything?

A VIEW OF MEMORY

Algorithm and Module Code

(What you wrote)

Stack (Static Area)

(Store stuff here)

Heap (Dynamic Area)

(Store stuff here)

LB

A LIST EXAMPLE

 We must maintain a list of data

 Sometimes we want to use only a little memory:

 Sometimes we need to use more memory

 Declaring variables in the standard way won’t
work here because we don’t know how many
variables to declare

 We need a way to allocate and de-allocate data
dynamically (i.e., on the fly)

THE STACK

 Recall the activation stack

 The stack can expand, but as for the data…

 Each frame contains static (fixed size) data

Algo var1 var2 var3

Proc_1 this_var that_var

The number of

variables needed

come from the

“isoftype”

statements.

THE STACK AND HEAP

•The heap is memory not used by the stack

• As stack grows, heap shrinks

• Static variables live in the stack

• Dynamic variables live in the heap

Main this_var that_var my_num_ptr 4 7

12

What kind of variable is this???

Heap

Stack

LB

WHAT?

 We know (sort of) how to get a pointer variable

 my_num_ptr isoftype Ptr toa Num

 But how do we get it to point at something?

LB

THE BUILT-IN FUNCTION NEW()

Takes a type as a parameter

Allocates memory in the heap for the

type

Returns a pointer to that memory

 my_num_ptr <- new(Num)

 dynamic_string <- new(String)

 list_head <- new(Node)

ACCESSING DYNAMIC DATA VIA POINTERS

 When we “follow a pointer”, we say that we

dereference that pointer

 The carat (^) means “dereference the pointer”

 my_num_ptr^ means ”follow my_num_ptr to

wherever it points”

 My_num_ptr^ <- 43 is valid

43

Main my_num_ptr

Heap: Dynamic

Stack: Static

Ptr1 isoftype Ptr toa Num

Ptr2 isoftype Ptr toa Num

Ptr1 <- new(Num)

Ptr1^ <- 5

Ptr2 <- Ptr1

Print(Ptr1^, Ptr2^)

Ptr2^ <- 7

Print(Ptr1^, Ptr2^)

Num

5 5

5 5

7 7

Ptr1

Ptr

Ptr2

Ptr

5 7

POINTER ANIMATION

OF NUMBERS static dynamic

A record to hold two items of data - a name

and a SSN:

Student definesa record

 name isoftype String

 SSN isoftype num

endrecord

And a pointer to a Student record:

current isoftype ptr toa Student

current <- new(Student)

name

SSN

