Data Warehousing

Introduction

* Data mining refers loosely to the process of semi
automatically analyzing large data bases to find useful
patterns Data ware house is a repository of information
gathered from multiple sources, stored under a unified
schema, at a single site

Applications

Multimedia Data Mining

Mining Raster Databases

Mining Associations in Multimedia Data
Audio and Video Data Mining

Text Mining

Mining the World Wide Web

Scope of research

In data mining we can design Data Mining Models.

Can develop data mining algorithms.

Add privacy and security features in data mining.

Scaling up for high dimensional data and high speed data
streams.

Data Analysis and Mining

* Decision Support Systems
* Data Analysis and OLAP

* Data Warehousing

* Data Mining

Decision Support Systems

Decision-support systems are used to make business
decisions, often based on data collected by on-line

transaction-processing systemes.
Examples of business decisions:
What items to stock?
What insurance premium to change?
To whom to send advertisements?
Examples of data used for making decisions
Retail sales transaction details
Customer profiles (income, age, gender, etc.)

Decision-Support Systems: Overview

Data analysis tasks are simplified by specialized tools and SQL extensions

Example tasks

For each product category and each region, what were the total sales in
the last quarter and how do they compare with the same quarter last

year
As above, for each product category and each customer category
Statistical analysis packages (e.g., : S++) can be interfaced with databases
Statistical analysis is a large field, but not covered here

Data mining seeks to discover knowledge automatically in the form of statistical
rules and patterns from large databases.

A data warehouse archives information gathered from multiple sources, and
stores it under a unified schema, at a single site.

Important for large businesses that generate data from multiple divisions,
possibly at multiple sites

Data may also be purchased externally

Data Analysis and OLAP

Online Analytical Processing (OLAP)

Interactive analysis of data, allowing data to be summarized and viewed
in different ways in an online fashion (with negligible delay)

Data that can be modeled as dimension attributes and measure attributes
are called multidimensional data.

Measure attributes

measure some value

can be aggregated upon

e.g. the attribute number of the sales relation
Dimension attributes

define the dimensions on which measure attributes (or aggregates
thereof) are viewed

e.g. the attributes item_name, color, and size of the sales relation

Cross Tabulation of sales by item-
name and color

item-name

The table above is an example of a cross-tabulation (cross-tab), also referred to as
a pivot-table.

Values for one of the dimension attributes form the row headers
Values for another dimension attribute form the column headers
Other dimension attributes are listed on top

Values in individual cells are (aggregates of) the values of the
dimension attributes that specify the cell.

Relational Representation of Cross-

tab S item-name
m Cross-tabs can be represented skirt
as relations skirt
skirt

®m We use the value all is used to skirt
represent aggregates
P ggreg dress

B The SQL:1999 standard dress
actually uses null values in
place of all despite confusion
with regular null values

dress
dress
shirt
shirt

shirt
shirt
pant
pant
pant
pant
all
all
all
all

Data Cube

B A data cube is a multidimensional generalization of a cross-tab
B Can have n dimensions:; we show 3 below
®m Cross-tabs can be used as views on a data cube

2 ,/8 /5 /7 /2

S 2/5 /3 /1 /1

a7 /6 12 /29

20

14

20

62

35

10

54

10

28

48

53

35

49

27

164

/|

34

/

21

skirt dress

item name

shirts

pant

all

42

%

16

%

18

/

45

/

small

medium

Online Analytical Processing

Pivoting: changing the dimensions used in a cross-tab is
called

Slicing: creating a cross-tab for fixed values only

Sometimes called dicing, particularly when values for
multiple dimensions are fixed.

Rollup: moving from finer-granularity data to a coarser
granularity

Drill down: The opposite operation - that of moving from
coarser-granularity data to finer-granularity data

Hierarchies on Dimensions

® Hierarchy on dimension attributes: lets dimensions to be viewed
at different levels of detall

? E.g. the dimension DateTime can be used to aggregate by hour of
day, date, day of week, month, quarter or year

Year

Quarter
Region

Day of week Month

\/ Country

Hour of day

\/ State

DateTime City

a) Time Hierarchy b) Location Hierarchy

Cross Tabulation With Hierarchy

m Cross-tabs can be easily extended to deal with hierarchies
? Can drill down or roll up on a hierarchy

category item-name

womenswear skirt
dress
subtotal

menswear pants
shirt
subtotal

OLAP Implementation

* The earliest OLAP systems used multidimensional arrays in memory to store
data cubes, and are referred to as multidimensional OLAP (MOLAP) systems.

* OLAP implementations using only relational database features are called
relational OLAP (ROLAP) systems

* Hybrid systems, which store some summaries in memory and store the base
data and other summaries in a relational database, are called hybrid OLAP
(HOLAP) system:s.

OLAP Implementation Contv)owde

Early OLAP systemS precomputed all possible aggregates in order to
online response

Space and time requirements for doing so can be very high
2" combinations of group by

It suffices to precompute some aggregates, and compute others on demand
from one of the precomputed aggregates

Can compute aggregate on (item-name, color) from an aggregate on (item-
name, color, size)

For all but a few “non-decomposable” aggregates such as median
is cheaper than computing it from scratch
Several optimizations available for computing multiple aggregates

Can compute aggregate on (item-name, color) from an aggregate on
(item-name, color, size)

Can compute aggregates on (item-name, color, size),

(item-name, color) and (item-name) using a single sorting

of the base data

Extended Aggregation in SQL:1999

The cube operation computes union of group by’s on every subset of the specified
attributes

E.g. consider the query

select item-name, color, size, sum(number)
from sales
group by cube(item-name, color, size)

This computes the union of eight different groupings of the sales relation:
{ (item-name, color, size), (item-name, color),

(item-name, size), (color, size),
(item-name), (color),
(size), ()}

where () denotes an empty group by list.

For each grouping, the result contains the null value
for attributes not present in the grouping.

Extended Aggregation (Cont.)

Relational representation of cross-tab that we saw earlier, but with null in place of
all, can be computed by

select item-name, color, sum(number)
from sales
group by cube(item-name, color)

The function grouping() can be applied on an attribute

Returns 1 if the value is a null value representing all, and returns 0 in all other
cases.

select item-name, color, size, sum(number),
grouping(item-name) as item-name-flag,
grouping(color) as color-flag,
grouping(size) as size-flag,

from sales

group by cube(item-name, color, size)

Can use the function decode() in the select clause to replace

such nulls by a value such as all

E.g. replace item-name in first query by
decode(grouping(item-name), 1, ‘all’, item-name)

Extended Aggregation (Cont.)

The rollup construct generates union on every prefix of specified list of
attributes
E.g.

select item-name, color, size, sum(number)

from sales

group by rollup(item-name, color, size)

Generates union of four groupings:
{ (item-name, color, size), (item-name, color), (item-name), () }

Rollup can be used to generate aggregates at multiple levels of a
hierarchy.

E.g., suppose table itemcategory(item-name, category) gives the category of
each item. Then

select category, item-name, sum(number)

from sales, itemcategory

where sales.item-name = itemcategory.item-name
group by rollup(category, item-name)

would give a hierarchical summary by item-name and by category.

Ranking

Ranking is done in conjunction with an order by specification.
Given a relation student-marks(student-id, marks) find the rank of each student.

select student-id, rank() over (order by marks desc) as s-rank
from student-marks

An extra order by clause is needed to get them in sorted order

select student-id, rank () over (order by marks desc) as s-rank
from student-marks
order by s-rank

Ranking may leave gaps: e.g. if 2 students have the same top mark, both have rank
1, and the next rank is 3

dense_rank does not leave gaps, so next dense rank would be 2

Ranking (Cont.)

Ranking can be done within partition of the data.
“Find the rank of students within each section.”

select student-id, section,
rank () over (partition by section order by marks desc)
as sec-rank
from student-marks, student-section
where student-marks.student-id = student-section.student-id
order by section, sec-rank

Multiple rank clauses can occur in a single select clause
Ranking is done after applying group by clause/aggregation

Ranking (Cont.)

Other ranking functions:
percent_rank (within partition, if partitioning is done)
cume_dist (cumulative distribution)
fraction of tuples with preceding values
row_number (non-deterministic in presence of duplicates)
SQL:1999 permits the user to specify nulls first or nulls last

select student-id,
rank () over (order by marks desc nulls last) as s-rank
from student-marks

Ranking (Cont.)

For a given constant n, the ranking the function ntile(n) takes the tuples in
each partition in the specified order, and divides them into n buckets with
equal numbers of tuples.

E.g.:
select threetile, sum(salary)

from (
select salary, ntile(3) over (order by salary) as threetile

from employee) as s
group by threetile

