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Introduction 

• Data mining refers loosely to the process of semi 
automatically analyzing large data  bases to find useful 
patterns  Data ware house is a repository of information 
gathered from multiple sources , stored under a unified 
schema , at a single site  



Applications 

• Multimedia Data Mining 

• Mining Raster Databases 

• Mining Associations in Multimedia Data 

• Audio and Video Data Mining 

• Text Mining 

• Mining the World Wide Web 

 



Scope of research 

• In data mining we can design Data Mining Models. 

• Can develop data mining algorithms. 

• Add privacy and security features in data mining. 

• Scaling up for high dimensional data and high speed data 
streams. 

 



Data Analysis and Mining  

• Decision  Support Systems 

• Data Analysis and OLAP 

• Data Warehousing  

• Data Mining  
 



Decision Support Systems 

 Decision-support systems are used to make business 
decisions, often based on data collected by on-line 
transaction-processing systems. 

 Examples of business decisions: 

◦ What items to stock? 

◦ What insurance premium to change? 

◦ To whom to send advertisements? 

 Examples of data used for making decisions 

◦  Retail sales transaction details 

◦  Customer profiles (income, age, gender, etc.) 



Decision-Support Systems: Overview 
• Data analysis tasks are simplified by specialized tools and SQL extensions 

• Example tasks 

• For each product category and each region, what were the total sales in 
the last quarter and how do they compare with the same quarter last 
year 

• As above, for each product category and each customer category 

• Statistical analysis packages (e.g., : S++) can be interfaced with databases 

• Statistical analysis is a large field, but not covered here 

• Data mining  seeks to discover knowledge automatically in the form of statistical 
rules and patterns from large databases. 

• A data warehouse archives information gathered from multiple sources, and 
stores it under a unified schema,  at a single site. 

• Important for large businesses that generate data from multiple divisions, 
possibly at multiple sites 

• Data may also be purchased externally 



Data Analysis and OLAP 
• Online Analytical Processing (OLAP) 

• Interactive analysis of data, allowing data to be summarized and viewed 
in different ways in an online fashion (with negligible delay) 

• Data that can be modeled as dimension attributes and measure attributes 
are called multidimensional data. 

• Measure attributes  

• measure some value 

• can be aggregated upon 

• e.g. the attribute number of the sales relation 

• Dimension attributes 

• define the dimensions on which measure attributes (or aggregates 
thereof) are viewed 

• e.g. the attributes item_name, color, and size of the sales relation 



Cross Tabulation of sales by item-
name and color 

• The table above is an example of a cross-tabulation (cross-tab), also referred to as 
a pivot-table. 

• Values for one of the dimension attributes form the row headers 

• Values for another dimension attribute form the column headers 

• Other dimension attributes are listed on top 

• Values in individual cells are (aggregates of) the values of the  
dimension attributes that specify the cell. 



Relational Representation of Cross-
tabs 

 Cross-tabs can be represented 
as relations 

 We use the value all is used to 
represent aggregates 

 The SQL:1999 standard 
actually uses null values in 
place of all despite confusion 
with regular null values 



Data Cube 

 

 A data cube is a multidimensional generalization of a cross-tab 

 Can have n  dimensions; we show 3 below  

 Cross-tabs can be used as views on a data cube 



Online Analytical Processing 
• Pivoting: changing the dimensions used in a cross-tab is 

called  

• Slicing: creating a cross-tab for fixed values only 

• Sometimes called dicing, particularly when values for 
multiple dimensions are fixed. 

• Rollup: moving from finer-granularity data to a coarser 
granularity  

• Drill down: The opposite operation -  that of moving from 
coarser-granularity data to finer-granularity data 
 



Hierarchies on Dimensions 
 Hierarchy on dimension attributes: lets dimensions to be viewed 

at different levels of detail 

 E.g. the dimension DateTime can be used to aggregate by hour of 

day, date, day of week, month, quarter or year 



Cross Tabulation With Hierarchy 

 Cross-tabs can be easily extended to deal with hierarchies 

 Can drill down or roll up on a hierarchy 



OLAP Implementation 
• The earliest OLAP systems used multidimensional arrays in memory to store 

data cubes, and are referred to as multidimensional OLAP (MOLAP) systems. 

• OLAP implementations using only relational database features are called 
relational OLAP (ROLAP) systems 

• Hybrid systems, which store some summaries in memory and store the base 
data and other summaries in a relational database, are called hybrid OLAP 
(HOLAP) systems. 

 

 



OLAP Implementation (Cont.) 
• Early OLAP systems precomputed all possible aggregates in order to provide 

online response 

• Space and time requirements for doing so can be very high 

• 2n combinations of group by 

• It suffices to precompute some aggregates, and compute others on demand 
from one of the precomputed aggregates 

• Can compute aggregate on (item-name, color) from an aggregate on (item-
name, color, size)  

• For all but a few “non-decomposable” aggregates such as median 

• is cheaper than computing it from scratch  

• Several optimizations available for computing multiple aggregates 

• Can compute aggregate on (item-name, color) from an aggregate on  
(item-name, color, size) 

• Can compute aggregates on (item-name, color, size),  
(item-name, color) and (item-name) using a single sorting  
of the base data 



Extended Aggregation in SQL:1999 
• The cube operation computes union of group by’s on every subset of the specified 

attributes 

• E.g. consider the query 

  select item-name, color, size, sum(number) 
 from sales 
 group by cube(item-name, color, size) 

      This computes the union of eight different groupings of the sales relation: 

    { (item-name, color, size), (item-name, color),  
     (item-name, size),           (color, size),  
     (item-name),                   (color),  
     (size),                              ( ) } 

      where ( ) denotes an empty group by list. 

• For each grouping, the result contains the null value  
for attributes not present in the grouping.  



Extended Aggregation (Cont.) 
• Relational representation of cross-tab that we saw earlier, but with null in place of 

all, can be computed by 
  select item-name, color, sum(number) 

 from sales 
 group by cube(item-name, color) 

• The function grouping() can be applied on an attribute 
• Returns 1 if the value is a null value representing all, and returns 0 in all other 

cases.  
 select item-name, color, size, sum(number), 

 grouping(item-name) as item-name-flag, 
 grouping(color) as color-flag, 
 grouping(size) as size-flag, 
from sales 
group by cube(item-name, color, size) 

• Can use the function decode() in the select clause to replace  
such nulls by a value such as all 

• E.g. replace item-name  in first query by  
   decode( grouping(item-name), 1, ‘all’, item-name) 

 



Extended Aggregation (Cont.) 
• The rollup construct generates union on every prefix of specified list of 

attributes  

• E.g.  

  select item-name, color, size, sum(number) 
 from sales 
 group by rollup(item-name, color, size) 

Generates union of four groupings: 

        { (item-name, color, size), (item-name, color), (item-name), ( ) } 

• Rollup can be used to generate aggregates at multiple levels of a 
hierarchy. 

• E.g., suppose table itemcategory(item-name, category) gives the category of 
each item. Then   

            select category, item-name, sum(number) 
           from sales, itemcategory 
           where sales.item-name = itemcategory.item-name 
           group by rollup(category, item-name) 

 would give a hierarchical summary by item-name and by category. 



Ranking 
• Ranking is done in conjunction with an order by specification.  

• Given a relation student-marks(student-id, marks) find the rank of each student. 

 select student-id, rank( ) over (order by marks desc) as s-rank 
from student-marks 

• An extra order by clause is needed to get them in sorted order 

 select student-id, rank ( ) over (order by marks desc) as s-rank 
from student-marks  
order by s-rank 

• Ranking may leave gaps: e.g. if 2 students have the same top mark, both have rank 
1, and the next rank is 3 

• dense_rank does not leave gaps, so next dense rank would be 2 

 



Ranking (Cont.) 
• Ranking can be done within partition of the data. 

• “Find the rank of students within each section.” 

 select student-id, section, 
 rank ( ) over (partition by section order by marks desc)  
            as sec-rank 
from student-marks, student-section 
where student-marks.student-id = student-section.student-id 
order by section, sec-rank 

• Multiple rank clauses can occur in a single select clause 

• Ranking is done after applying group by clause/aggregation 

 



Ranking (Cont.) 

• Other ranking functions:   

• percent_rank (within partition, if partitioning is done) 

• cume_dist (cumulative distribution) 

•  fraction of tuples with preceding values 

• row_number (non-deterministic in presence of duplicates) 

• SQL:1999 permits the user to specify nulls first or nulls last 

     select student-id,  
            rank ( ) over (order by marks desc nulls last) as s-rank 
from student-marks 



Ranking (Cont.) 
• For a given constant n, the ranking the function ntile(n) takes the tuples in 

each partition in the specified order, and divides them into n buckets with 
equal numbers of tuples. 

• E.g.: 

 select threetile, sum(salary) 
from ( 
 select salary, ntile(3) over (order by salary) as threetile 
 from employee) as s 
group by threetile 


