

Data Warehousing

Introduction

• Data mining refers loosely to the process of semi
automatically analyzing large data bases to find useful
patterns Data ware house is a repository of information
gathered from multiple sources , stored under a unified
schema , at a single site

Applications

• Multimedia Data Mining

• Mining Raster Databases

• Mining Associations in Multimedia Data

• Audio and Video Data Mining

• Text Mining

• Mining the World Wide Web

Scope of research

• In data mining we can design Data Mining Models.

• Can develop data mining algorithms.

• Add privacy and security features in data mining.

• Scaling up for high dimensional data and high speed data
streams.

Data Analysis and Mining

• Decision Support Systems

• Data Analysis and OLAP

• Data Warehousing

• Data Mining

Decision Support Systems

 Decision-support systems are used to make business
decisions, often based on data collected by on-line
transaction-processing systems.

 Examples of business decisions:

◦ What items to stock?

◦ What insurance premium to change?

◦ To whom to send advertisements?

 Examples of data used for making decisions

◦ Retail sales transaction details

◦ Customer profiles (income, age, gender, etc.)

Decision-Support Systems: Overview
• Data analysis tasks are simplified by specialized tools and SQL extensions

• Example tasks

• For each product category and each region, what were the total sales in
the last quarter and how do they compare with the same quarter last
year

• As above, for each product category and each customer category

• Statistical analysis packages (e.g., : S++) can be interfaced with databases

• Statistical analysis is a large field, but not covered here

• Data mining seeks to discover knowledge automatically in the form of statistical
rules and patterns from large databases.

• A data warehouse archives information gathered from multiple sources, and
stores it under a unified schema, at a single site.

• Important for large businesses that generate data from multiple divisions,
possibly at multiple sites

• Data may also be purchased externally

Data Analysis and OLAP
• Online Analytical Processing (OLAP)

• Interactive analysis of data, allowing data to be summarized and viewed
in different ways in an online fashion (with negligible delay)

• Data that can be modeled as dimension attributes and measure attributes
are called multidimensional data.

• Measure attributes

• measure some value

• can be aggregated upon

• e.g. the attribute number of the sales relation

• Dimension attributes

• define the dimensions on which measure attributes (or aggregates
thereof) are viewed

• e.g. the attributes item_name, color, and size of the sales relation

Cross Tabulation of sales by item-
name and color

• The table above is an example of a cross-tabulation (cross-tab), also referred to as
a pivot-table.

• Values for one of the dimension attributes form the row headers

• Values for another dimension attribute form the column headers

• Other dimension attributes are listed on top

• Values in individual cells are (aggregates of) the values of the
dimension attributes that specify the cell.

Relational Representation of Cross-
tabs

 Cross-tabs can be represented
as relations

 We use the value all is used to
represent aggregates

 The SQL:1999 standard
actually uses null values in
place of all despite confusion
with regular null values

Data Cube

 A data cube is a multidimensional generalization of a cross-tab

 Can have n dimensions; we show 3 below

 Cross-tabs can be used as views on a data cube

Online Analytical Processing
• Pivoting: changing the dimensions used in a cross-tab is

called

• Slicing: creating a cross-tab for fixed values only

• Sometimes called dicing, particularly when values for
multiple dimensions are fixed.

• Rollup: moving from finer-granularity data to a coarser
granularity

• Drill down: The opposite operation - that of moving from
coarser-granularity data to finer-granularity data

Hierarchies on Dimensions
 Hierarchy on dimension attributes: lets dimensions to be viewed

at different levels of detail

 E.g. the dimension DateTime can be used to aggregate by hour of

day, date, day of week, month, quarter or year

Cross Tabulation With Hierarchy

 Cross-tabs can be easily extended to deal with hierarchies

 Can drill down or roll up on a hierarchy

OLAP Implementation
• The earliest OLAP systems used multidimensional arrays in memory to store

data cubes, and are referred to as multidimensional OLAP (MOLAP) systems.

• OLAP implementations using only relational database features are called
relational OLAP (ROLAP) systems

• Hybrid systems, which store some summaries in memory and store the base
data and other summaries in a relational database, are called hybrid OLAP
(HOLAP) systems.

OLAP Implementation (Cont.)
• Early OLAP systems precomputed all possible aggregates in order to provide

online response

• Space and time requirements for doing so can be very high

• 2n combinations of group by

• It suffices to precompute some aggregates, and compute others on demand
from one of the precomputed aggregates

• Can compute aggregate on (item-name, color) from an aggregate on (item-
name, color, size)

• For all but a few “non-decomposable” aggregates such as median

• is cheaper than computing it from scratch

• Several optimizations available for computing multiple aggregates

• Can compute aggregate on (item-name, color) from an aggregate on
(item-name, color, size)

• Can compute aggregates on (item-name, color, size),
(item-name, color) and (item-name) using a single sorting
of the base data

Extended Aggregation in SQL:1999
• The cube operation computes union of group by’s on every subset of the specified

attributes

• E.g. consider the query

 select item-name, color, size, sum(number)
 from sales
 group by cube(item-name, color, size)

 This computes the union of eight different groupings of the sales relation:

 { (item-name, color, size), (item-name, color),
 (item-name, size), (color, size),
 (item-name), (color),
 (size), () }

 where () denotes an empty group by list.

• For each grouping, the result contains the null value
for attributes not present in the grouping.

Extended Aggregation (Cont.)
• Relational representation of cross-tab that we saw earlier, but with null in place of

all, can be computed by
 select item-name, color, sum(number)

 from sales
 group by cube(item-name, color)

• The function grouping() can be applied on an attribute
• Returns 1 if the value is a null value representing all, and returns 0 in all other

cases.
 select item-name, color, size, sum(number),

 grouping(item-name) as item-name-flag,
 grouping(color) as color-flag,
 grouping(size) as size-flag,
from sales
group by cube(item-name, color, size)

• Can use the function decode() in the select clause to replace
such nulls by a value such as all

• E.g. replace item-name in first query by
 decode(grouping(item-name), 1, ‘all’, item-name)

Extended Aggregation (Cont.)
• The rollup construct generates union on every prefix of specified list of

attributes

• E.g.

 select item-name, color, size, sum(number)
 from sales
 group by rollup(item-name, color, size)

Generates union of four groupings:

 { (item-name, color, size), (item-name, color), (item-name), () }

• Rollup can be used to generate aggregates at multiple levels of a
hierarchy.

• E.g., suppose table itemcategory(item-name, category) gives the category of
each item. Then

 select category, item-name, sum(number)
 from sales, itemcategory
 where sales.item-name = itemcategory.item-name
 group by rollup(category, item-name)

 would give a hierarchical summary by item-name and by category.

Ranking
• Ranking is done in conjunction with an order by specification.

• Given a relation student-marks(student-id, marks) find the rank of each student.

 select student-id, rank() over (order by marks desc) as s-rank
from student-marks

• An extra order by clause is needed to get them in sorted order

 select student-id, rank () over (order by marks desc) as s-rank
from student-marks
order by s-rank

• Ranking may leave gaps: e.g. if 2 students have the same top mark, both have rank
1, and the next rank is 3

• dense_rank does not leave gaps, so next dense rank would be 2

Ranking (Cont.)
• Ranking can be done within partition of the data.

• “Find the rank of students within each section.”

 select student-id, section,
 rank () over (partition by section order by marks desc)
 as sec-rank
from student-marks, student-section
where student-marks.student-id = student-section.student-id
order by section, sec-rank

• Multiple rank clauses can occur in a single select clause

• Ranking is done after applying group by clause/aggregation

Ranking (Cont.)

• Other ranking functions:

• percent_rank (within partition, if partitioning is done)

• cume_dist (cumulative distribution)

• fraction of tuples with preceding values

• row_number (non-deterministic in presence of duplicates)

• SQL:1999 permits the user to specify nulls first or nulls last

 select student-id,
 rank () over (order by marks desc nulls last) as s-rank
from student-marks

Ranking (Cont.)
• For a given constant n, the ranking the function ntile(n) takes the tuples in

each partition in the specified order, and divides them into n buckets with
equal numbers of tuples.

• E.g.:

 select threetile, sum(salary)
from (
 select salary, ntile(3) over (order by salary) as threetile
 from employee) as s
group by threetile

