

 Distributed Data base system consists of loosely

coupled sides that share no physical Components

and the parallel processors are tightly coupled and

constitute a single data Base system

 distributed database are widely used in large
data processing, today’s word using the
internet, e-banking system, whether
forecasting etc. where large amount of data is
processed, so there we need of data
processing if data is distributed in many
places then that is distributed data
processing, there fore scope of parallel data
bases and distributed data processing is very
bright.

 Lots of research are going on in distributed
data processing and parallel databases.

 Introduction

 I/O Parallelism

 Interquery Parallelism

 Intraquery Parallelism

 Intraoperation Parallelism

 Interoperation Parallelism

 Design of Parallel Systems

 Parallel machines are becoming quite common
and affordable
◦ Prices of microprocessors, memory and disks have

dropped sharply
◦ Recent desktop computers feature multiple processors

and this trend is projected to accelerate
 Databases are growing increasingly large
◦ large volumes of transaction data are collected and

stored for later analysis.
◦ multimedia objects like images are increasingly stored in

databases
 Large-scale parallel database systems

increasingly used for:
◦ storing large volumes of data
◦ processing time-consuming decision-support queries
◦ providing high throughput for transaction processing

 Data can be partitioned across multiple disks for
parallel I/O.

 Individual relational operations (e.g., sort, join,
aggregation) can be executed in parallel
◦ data can be partitioned and each processor can work

independently on its own partition.

 Queries are expressed in high level language
(SQL, translated to relational algebra)
◦ makes parallelization easier.

 Different queries can be run in parallel with each
other. Concurrency control takes care of
conflicts.

 Thus, databases naturally lend themselves to
parallelism.

 Reduce the time required to retrieve relations from
disk by partitioning

 the relations on multiple disks.
 Horizontal partitioning – tuples of a relation are

divided among many disks such that each tuple
resides on one disk.

 Partitioning techniques (number of disks = n):
Round-robin:

Send the ith tuple inserted in the relation to disk i mod n.
Hash partitioning:
◦ Choose one or more attributes as the partitioning

attributes.
◦ Choose hash function h with range 0…n - 1
◦ Let i denote result of hash function h applied to the

partitioning attribute value of a tuple. Send tuple to disk i.

 Partitioning techniques (cont.):
 Range partitioning:
◦ Choose an attribute as the partitioning attribute.
◦ A partitioning vector [vo, v1, ..., vn-2] is chosen.
◦ Let v be the partitioning attribute value of a tuple.

Tuples such that vi  vi+1 go to disk I + 1. Tuples
with v < v0 go to disk 0 and tuples with v  vn-2 go
to disk n-1.

E.g., with a partitioning vector [5,11], a tuple with
partitioning attribute value of 2 will go to disk 0, a
tuple with value 8 will go to disk 1, while a tuple
with value 20 will go to disk2.

 Evaluate how well partitioning techniques
support the following types of data access:

 1.Scanning the entire relation.

 2.Locating a tuple associatively – point
queries.
◦ E.g., r.A = 25.

 3.Locating all tuples such that the value of a
given attribute lies within a specified range –
range queries.
◦ E.g., 10  r.A < 25.

Round robin:

 Advantages
◦ Best suited for sequential scan of entire relation on

each query.

◦ All disks have almost an equal number of tuples;
retrieval work is thus well balanced between disks.

 Range queries are difficult to process
◦ No clustering -- tuples are scattered across all

disks

Hash partitioning:

 Good for sequential access

◦ Assuming hash function is good, and partitioning attributes form
a key, tuples will be equally distributed between disks

◦ Retrieval work is then well balanced between disks.

 Good for point queries on partitioning attribute

◦ Can lookup single disk, leaving others available for answering
other queries.

◦ Index on partitioning attribute can be local to disk, making lookup
and update more efficient

 No clustering, so difficult to answer range queries

 Range partitioning:

 Provides data clustering by partitioning attribute value.

 Good for sequential access

 Good for point queries on partitioning attribute: only one disk needs
to be accessed.

 For range queries on partitioning attribute, one to a few disks may
need to be accessed

◦ Remaining disks are available for other queries.

◦ Good if result tuples are from one to a few blocks.

◦ If many blocks are to be fetched, they are still fetched from one to
a few disks, and potential parallelism in disk access is wasted

 Example of execution skew.

 If a relation contains only a few tuples which
will fit into a single disk block, then assign
the relation to a single disk.

 Large relations are preferably partitioned
across all the available disks.

 If a relation consists of m disk blocks and
there are n disks available in the system, then
the relation should be allocated min(m,n)
disks.

 The distribution of tuples to disks may be skewed — that is, some
disks have many tuples, while others may have fewer tuples.

 Types of skew:

◦ Attribute-value skew.

 Some values appear in the partitioning attributes of many
tuples; all the tuples with the same value for the partitioning
attribute end up in the same partition.

 Can occur with range-partitioning and hash-partitioning.

◦ Partition skew.

 With range-partitioning, badly chosen partition vector may
assign too many tuples to some partitions and too few to
others.

 Less likely with hash-partitioning if a good hash-function is
chosen.

 To create a balanced partitioning vector
(assuming partitioning attribute forms a key of
the relation):
◦ Sort the relation on the partitioning attribute.
◦ Construct the partition vector by scanning the relation in

sorted order as follows.
 After every 1/nth of the relation has been read, the value of

the partitioning attribute of the next tuple is added to the
partition vector.

◦ n denotes the number of partitions to be constructed.
◦ Duplicate entries or imbalances can result if duplicates

are present in partitioning attributes.

 Alternative technique based on histograms used
in practice

 Skew in range partitioning can be handled
elegantly using virtual processor partitioning:
◦ create a large number of partitions (say 10 to 20 times

the number of processors)
◦ Assign virtual processors to partitions either in round-

robin fashion or based on estimated cost of processing
each virtual partition

 Basic idea:
◦ If any normal partition would have been skewed, it is

very likely the skew is spread over a number of virtual
partitions

◦ Skewed virtual partitions get spread across a number of
processors, so work gets distributed evenly!

 Queries/transactions execute in parallel with one another.
 Increases transaction throughput; used primarily to scale

up a transaction processing system to support a larger
number of transactions per second.

 Easiest form of parallelism to support, particularly in a
shared-memory parallel database, because even
sequential database systems support concurrent
processing.

 More complicated to implement on shared-disk or shared-
nothing architectures
◦ Locking and logging must be coordinated by passing messages

between processors.
◦ Data in a local buffer may have been updated at another

processor.
◦ Cache-coherency has to be maintained — reads and writes of data

in buffer must find latest version of data.

 Example of a cache coherency protocol for shared disk systems:

◦ Before reading/writing to a page, the page must be locked in
shared/exclusive mode.

◦ On locking a page, the page must be read from disk

◦ Before unlocking a page, the page must be written to disk if it was
modified.

 More complex protocols with fewer disk reads/writes exist.

 Cache coherency protocols for shared-nothing systems are similar.
Each database page is assigned a home processor. Requests to
fetch the page or write it to disk are sent to the home processor.

 Execution of a single query in parallel on multiple processors/disks;
important for speeding up long-running queries.

 Two complementary forms of intraquery parallelism :

◦ Intraoperation Parallelism – parallelize the execution of each
individual operation in the query.

◦ Interoperation Parallelism – execute the different operations in a
query expression in parallel.

 the first form scales better with increasing parallelism because
the number of tuples processed by each operation is typically more
than the number of operations in a query

