

 Distributed Data base system consists of loosely

coupled sides that share no physical Components

and the parallel processors are tightly coupled and

constitute a single data Base system

 distributed database are widely used in large
data processing, today’s word using the
internet, e-banking system, whether
forecasting etc. where large amount of data is
processed, so there we need of data
processing if data is distributed in many
places then that is distributed data
processing, there fore scope of parallel data
bases and distributed data processing is very
bright.

 Lots of research are going on in distributed
data processing and parallel databases.

 Centralized and Client-Server Systems

 Server System Architectures

 Parallel Systems

 Distributed Systems

 Network Types

 Run on a single computer system and do not interact with

other computer systems.

 General-purpose computer system: one to a few CPUs and a

number of device controllers that are connected through a

common bus that provides access to shared memory.

 Single-user system (e.g., personal computer or workstation):

desk-top unit, single user, usually has only one CPU and one

or two hard disks; the OS may support only one user.

 Multi-user system: more disks, more memory, multiple CPUs,

and a multi-user OS. Serve a large number of users who are

connected to the system vie terminals. Often called server

systems.

 Server systems satisfy requests generated at m

client systems, whose general structure is

shown below:

 Database functionality can be divided into:

◦ Back-end: manages access structures, query evaluation and
optimization, concurrency control and recovery.

◦ Front-end: consists of tools such as forms, report-writers, and
graphical user interface facilities.

 The interface between the front-end and the back-end is through
SQL or through an application program interface.

 Advantages of replacing mainframes with

networks of workstations or personal computers

connected to back-end server machines:

◦ better functionality for the cost

◦ flexibility in locating resources and

expanding facilities

◦ better user interfaces

◦ easier maintenance

 Server systems can be broadly categorized into

two kinds:
◦ transaction servers which are widely used in relational

database systems, and

◦ data servers, used in object-oriented database systems

 Also called query server systems or SQL server systems

◦ Clients send requests to the server

◦ Transactions are executed at the server

◦ Results are shipped back to the client.

 Requests are specified in SQL, and communicated to the server

through a remote procedure call (RPC) mechanism.

 Transactional RPC allows many RPC calls to form a transaction.

 Open Database Connectivity (ODBC) is a C language application

program interface standard from Microsoft for connecting to a

server, sending SQL requests, and receiving results.

 JDBC standard is similar to ODBC, for Java

 A typical transaction server consists of multiple

processes accessing data in shared memory.

 Server processes

◦ These receive user queries (transactions), execute

them and send results back

◦ Processes may be multithreaded, allowing a

single process to execute several user queries

concurrently

◦ Typically multiple multithreaded server processes

 Lock manager process

◦ More on this later

 Database writer process

◦ Output modified buffer blocks to disks continually

 Log writer process

◦ Server processes simply add log records to log record

buffer

◦ Log writer process outputs log records to stable

storage.

 Checkpoint process

◦ Performs periodic checkpoints

 Process monitor process

◦ Monitors other processes, and takes recovery actions

if any of the other processes fail

 E.g. aborting any transactions being executed by a server

process and restarting it

 Shared memory contains shared data

◦ Buffer pool

◦ Lock table

◦ Log buffer

◦ Cached query plans (reused if same query submitted again)

 All database processes can access shared memory

 To ensure that no two processes are accessing the same data
structure at the same time, databases systems implement mutual
exclusion using either

◦ Operating system semaphores

◦ Atomic instructions such as test-and-set

 To avoid overhead of interprocess communication for lock
request/grant, each database process operates directly on the
lock table

◦ instead of sending requests to lock manager process

 Lock manager process still used for deadlock detection

 Used in high-speed LANs, in cases where

◦ The clients are comparable in processing power to the server

◦ The tasks to be executed are compute intensive.

 Data are shipped to clients where processing is performed, and then
shipped results back to the server.

 This architecture requires full back-end functionality at the clients.

 Used in many object-oriented database systems

 Issues:

◦ Page-Shipping versus Item-Shipping

◦ Locking

◦ Data Caching

◦ Lock Caching

 Page-shipping versus item-shipping

◦ Smaller unit of shipping  more messages

◦ Worth prefetching related items along with requested item

◦ Page shipping can be thought of as a form of prefetching

 Locking

◦ Overhead of requesting and getting locks from server is high due
to message delays

◦ Can grant locks on requested and prefetched items; with page
shipping, transaction is granted lock on whole page.

◦ Locks on a prefetched item can be P{called back} by the server,
and returned by client transaction if the prefetched item has not
been used.

◦ Locks on the page can be deescalated to locks on items in the
page when there are lock conflicts. Locks on unused items can
then be returned to server.

 Data Caching
◦ Data can be cached at client even in between transactions
◦ But check that data is up-to-date before it is used (cache

coherency)
◦ Check can be done when requesting lock on data item

 Lock Caching
◦ Locks can be retained by client system even in between

transactions
◦ Transactions can acquire cached locks locally, without

contacting server
◦ Server calls back locks from clients when it receives

conflicting lock request. Client returns lock once no local
transaction is using it.

◦ Similar to deescalation, but across transactions.

 Parallel database systems consist of multiple processors
and multiple disks connected by a fast interconnection
network.

 A coarse-grain parallel machine consists of a small
number of powerful processors

 A massively parallel or fine grain parallel machine
utilizes thousands of smaller processors.

 Two main performance measures:

◦ throughput --- the number of tasks that can be
completed in a given time interval

◦ response time --- the amount of time it takes to
complete a single task from the time it is submitted

 Speedup: a fixed-sized problem executing on a small system is
given to a system which is N-times larger.

◦ Measured by:

speedup = small system elapsed time

 large system elapsed time

◦ Speedup is linear if equation equals N.

 Scaleup: increase the size of both the problem and the system

◦ N-times larger system used to perform N-times larger job

◦ Measured by:

scaleup = small system small problem elapsed time

 big system big problem elapsed time

◦ Scale up is linear if equation equals 1.

Speedup

Scaleup

 Batch scaleup:

◦ A single large job; typical of most decision support queries

and scientific simulation.

◦ Use an N-times larger computer on N-times larger problem.

 Transaction scaleup:

◦ Numerous small queries submitted by independent users to

a shared database; typical transaction processing and

timesharing systems.

◦ N-times as many users submitting requests (hence, N-times

as many requests) to an N-times larger database, on an N-

times larger computer.

◦ Well-suited to parallel execution.

Speedup and scaleup are often sublinear due to:

 Startup costs: Cost of starting up multiple processes may dominate
computation time, if the degree of parallelism is high.

 Interference: Processes accessing shared resources (e.g.,system
bus, disks, or locks) compete with each other, thus spending time
waiting on other processes, rather than performing useful work.

 Skew: Increasing the degree of parallelism increases the variance in
service times of parallely executing tasks. Overall execution time
determined by slowest of parallely executing tasks.

 Bus. System components send data on and receive data from a
single communication bus;

◦ Does not scale well with increasing parallelism.

 Mesh. Components are arranged as nodes in a grid, and each
component is connected to all adjacent components

◦ Communication links grow with growing number of components,
and so scales better.

◦ But may require 2n hops to send message to a node (or n with
wraparound connections at edge of grid).

 Hypercube. Components are numbered in binary; components are
connected to one another if their binary representations differ in
exactly one bit.

◦ n components are connected to log(n) other components and can
reach each other via at most log(n) links; reduces communication
delays.

 Shared memory -- processors share a common

memory

 Shared disk -- processors share a common disk

 Shared nothing -- processors share neither a common

memory nor common disk

 Hierarchical -- hybrid of the above architectures

 Processors and disks have access to a common

memory, typically via a bus or through an

interconnection network.

 Extremely efficient communication between processors

— data in shared memory can be accessed by any

processor without having to move it using software.

 Downside – architecture is not scalable beyond 32 or 64

processors since the bus or the interconnection network

becomes a bottleneck

 Widely used for lower degrees of parallelism (4 to 8).

 All processors can directly access all disks via an interconnection
network, but the processors have private memories.

◦ The memory bus is not a bottleneck

◦ Architecture provides a degree of fault-tolerance — if a processor
fails, the other processors can take over its tasks since the
database is resident on disks that are accessible from all
processors.

 Examples: IBM Sysplex and DEC clusters (now part of Compaq)
running Rdb (now Oracle Rdb) were early commercial users

 Downside: bottleneck now occurs at interconnection to the disk
subsystem.

 Shared-disk systems can scale to a somewhat larger number of
processors, but communication between processors is slower.

 Node consists of a processor, memory, and one or more disks.
Processors at one node communicate with another processor at
another node using an interconnection network. A node functions as
the server for the data on the disk or disks the node owns.

 Examples: Teradata, Tandem, Oracle-n CUBE

 Data accessed from local disks (and local memory accesses) do not
pass through interconnection network, thereby minimizing the
interference of resource sharing.

 Shared-nothing multiprocessors can be scaled up to thousands of
processors without interference.

 Main drawback: cost of communication and non-local disk access;
sending data involves software interaction at both ends.

 Combines characteristics of shared-memory, shared-disk, and
shared-nothing architectures.

 Top level is a shared-nothing architecture – nodes connected by an
interconnection network, and do not share disks or memory with
each other.

 Each node of the system could be a shared-memory system with a
few processors.

 Alternatively, each node could be a shared-disk system, and each of
the systems sharing a set of disks could be a shared-memory
system.

 Reduce the complexity of programming such systems by distributed
virtual-memory architectures

◦ Also called non-uniform memory architecture (NUMA)

 Data spread over multiple machines (also referred to as sites or
nodes).

 Network interconnects the machines

 Data shared by users on multiple machines

