Object-Oriented Database
Development

Objectives

» Definition of terms

) 8r§|?te object-oriented database schemas in

» Transform UML class diagrams to ODL
schemas

» Identify type specifications for attributes,
arguments, and operation return values

» Create objects and specify their attribute
values

» Understand object-oriented database
implementation steps

» Understand OQL syntax and semantics

» Understand object-oriented database
appllcatlons

Object Definition Language (ODL)

» Corresponds to SQL’s DDL (Data Definition
Language)

» Specify the logical schema for an object-
oriented database

» Based on the specifications of Object
Database Management Group (ODMG)

Defining a Class

class Student |
for defining atiriodie String hame, See page 620
classes attribute Date dateOfBirth;

» attribute -

keyword for attrbute Address address;

attributes attribute Phone phone;

» operations - /I elafionship between Student and CourseOffering
E%t#]"er: E)yal?,g’m eters relationship set <CourseQferng> takes inverse CourseQffermgtaken_by;
in parentheses /l operations

» relationship - .
keyword _foe Shortage
establishing float gpa

relationship boolean register_for(string crse, short sec, string term);

i

Defining an Attribute

» Value can be either:
> Object identifier OR Literal

» Types of literals

- Atomic - a constant that cannot be decomposed into
components

> Collection - multiple literals or object types

- Structure - a fixed number of named elements, each of which
could be a literal or object type

» Attribute ranges

- Allowable values for an attribute
- enum - for enumerating the allowable values

Kinds of Collections

» Set - unordered collection without
duplicates

» Bag - unordered collection that may contain
duplicates

» List - ordered collection, all the same type

» Array - dynamically sized ordered
collection, locatable by position

» Dictionary - unordered sequence of key-
value pairs without duplicates

Defining Structures

Structure = user-defined type with
components

struct keyword

Example:

struct Address {
String street_address
String city;
String state;
String zip;

b

Defining Operations

» Return type
»Name

» Parentheses following the
name

» Arguments within the
parentheses

Defining Relationships

» Only unary and binary relationships allowed

» Relationships are bi-directional
- implemented through use of inverse keyword

» ODL relationships are specified:
- relationship indicates that class is on many-side

- relationship set indicates that class is on one-
side and other class (many) instances unordered

- relationship list indicates that class is on one-
side and other class (many) instances ordered

Figure 15-1: UML class diagram for a university database

Student Course Course
name Ui 0rse_code
date(fBirth ' Takes} "I torm * Bem”gsmb 1{:rse:lille '
: enroliment() enrollment()
08!) ;
0pa()

reqister_for(crse, sec, term)

The following slides illustrate the
ODL implementation of this
UML diagram

F1as prereqs }

{ Is prereq for

10

Figure 15-2: ODL Schema for university database

class Studant |
[extent students)
attribute string nams;
attribute Date dataOfBirth,
attribute Address address;
attribute Phone phone;
relationship set (CourseOffering) takes inverse CourseOftering: taken_by;
short agel);
float gpal):
boolean register_for(string crse, short sec, siring term);

| =

class CourseQffering {

[extent courseofferings)
attribute string tarm:
attribute enum =section {1, 2, 3. 4, &, 8, 7, 8);
relationship set (Student) taken_by inverse Student::takes;
relationship Course belongs_to inverse Course:offers;
shart enrollment();

K

class Course |

[extent courses)
attribute string crse_code;
attribute string crse_title;
attribute short cradit_hrs;
relationship set (Course) has_prereqs inverse Course:lis_praeraq_for;
relationship set (Course) is_prereq_for inverse Course:has_prereqgs;
relationship list (CourseOffering) offers inverse CourseOffering::belongs_fo;
shart enrollment();

Figure 15-2: ODL Schema for university database (cont.)

class Student |
[extent students)
attribute string nams;
attribute Date dataOfBirth,
attribute Address address;
attribute Phone phone;
relationship set (CourseOffering) takes inverse CourseOftering: taken_by;

short agel);
float gpal):
boolean register_for(string crse, short sec, siring term);

|-

class CourseQffering {

[extent courseofferings))
attribute string term: class keyword begins
attribute enum section {1, 2, 3, 4, 5, 6, 7. 8); the class
relationship set (Student) taken_by inverse Student::takes; definition.Class
relationship Course belongs_to inverse Course:offers;

B ey D components enclosed

k between { and }

class Course |

[extent courses)
attribute string crse_code;
attribute string crse_title;
attribute short cradit_hrs;
relationship set (Course) has_prereqs inverse Course:lis_praeraq_for;
relationship set (Course) is_prereq_for inverse Course:has_prereqgs;
relationship list (CourseOffering) offers inverse CourseOffering::belongs_fo;
shart enrollment();

Figure 15-2: ODL Schema for university database (cont.)

class Studant |
extent students)

attribute string name; .
attribute Date dateOfBirth: attribute has a data type and a name

attribute Address address;
attribute Phone phone;
relationship set (CourseOffering) takes inverse CourseOffering: taken_by;
short agel);

float gpal):

boolean register_for(string crse, short sec, siring term);

| =

class CourseQffering {

[extent courseofferings)]

atbute sStrng term: specify allowable values
attribute enum section {1. 2 3. 4 5.6, 7. 8] using enum

relationship set (Student) taken_by inverse Student::takes;

relationship Course belongs_to inverse Course:offers;

shart enrollment();

7

class Course |

[extent courses)

[atnbule string crse_code,
attribute string crae_title;
attribute short cradit_hrs;

relationship set (Course) has_prereqs inverse Course:lis_praeraq_for;
relationship set (Course) is_prereq_for inverse Course:has_prereqgs;
relationship list (CourseOffering) offers inverse CourseOffering::belongs_fo;
shart enrollment();

Figure 15-2: ODL Schema for university database (cont.)

{ .
[extent students) extent = the set of all instances of the class
attribute string name,
attribute Date dataOfBirth,
attribute Address address;
attribute Phone phone;
relationship set (CourseOffering) takes inverse CourseOftering: taken_by;
short agel);
float gpal):
boolean register_for(string crse, short sec, siring term);

| =

Fing {
[extent courseofferings)
a ute string tarrm,

attribute enum =section {1, 2, 3. 4, &, 8, 7, 8);

relationship set (Student) taken_by inverse Student::takes;
relationship Course belongs_to inverse Course:offers;
shart enrollment();

7

class Course {

[extent courses)

—_ GLmIbULe SUng orse_coue,
attribute string crse_title;
attribute short cradit_hrs;
relationship set (Course) has_prereqs inverse Course:lis_praeraq_for;
relationship set (Course) is_prereq_for inverse Course:has_prereqgs;
relationship list (CourseOffering) offers inverse CourseOffering::belongs_fo;
shart enrollment();

14

Figure 15-2: ODL Schema for university database (cont.)

class Studant |

[extent students)
attribute string nams;
attribute Date dataOfBirth,
attribute Address address;
attribute Phone phone;

relationship set (CourseOffering) takes inverse CoursaOffering: taken_by;

short agel };
float gpal):

boolean register_for(string crse, short sec, siring term);

|5

class CourseQffering {
[extent courseofferings)
attribute string tarm:
attribute enum =section {1, 2, 3. 4, &, 8, 7, 8);

relahunshlp set (Student) taken_by inverse Student::takes;

longs_to inverse Course::offers;
shart enrollment();

|5

class Course |

[extent courses)
attribute string crse_code;
attribute string crse_title;
attribute short cradit_hrs;

Operation definition:
return type, name,
and argument list.
Arguments include
data types and names

relationship set (Course) has_prereqs inverse Course:lis_praeraq_for;
relahunshlp set (Course) is_prereq_for inverse Course::has_prereqs;

|5

i sa0ffering) offers inverse CourseOffering::belongs_fo;
shart enrollment();

15

Figure 15-2: ODL Schema for university database (cont.)

class Studant |
[extent students)
attribute string nams;
attribute Date dataOfBirth,
attribute Address address;
attribute Phone phone;
| relationship set (CourseOffering) takes inverse CourseOttering: itaken_by; |

short age(|,

float gpal):

boolean register_for(string crse, short sec, siring term);
X relationship sets indicate 1:N relationship to an
class CourseQffering {

, unordered collection of instances of the other class
[extent courseofferings)

attribute string tarm:
attribute enum =section {1, 2, 3, 4, &, &, 7, 8);
| relationship set {Student) taken_by inverse Student::takes: |
relationship Course belongs_to inverse Course:offers;
shart enrollment();

K
S inverse establishes the bidirectionality of the relationship

[extent courses)
attribute string crse_code;
attribute string crse_title;
attribute short cradt_hrs;
relationship set (Course) has_prereqs inverse Course:lis_praeraq_for;
relationship set (Course) is_prereq_for inverse Course:has_prereqgs;

r | CUrse ring 2rsl CUrse TIng). Qe S5_Toy,
shart enrollment();

16

Figure 15-2: ODL Schema for university database (cont.)

class Studant |
[extent students)
attribute string nams;
attribute Date dataOfBirth,
attribute Address address;
attribute Phone phone;
relationship set (CourseOffering) takes inverse CourseOftering: taken_by;

short agel };
float gpal):
boolean register_for(string crse, short sec, siring term);
|-
class CourseQffering {
[extent courseofferings)
attribute string tarm:
attribute enum =section {1, 2, 3. 4, &, 8, 7, 8);
relationship set (Student) taken_by inverse Student::takes;
relationship Course belongs_to inverse Course:offers;
shart enrollment]);
K relationship list indicates 1:N relationship to an
class Course | ordered collection of instances of the other class

[extent courses)
attribute string crse_code;
attribute string crse_title;
attribute short cradit_hrs;
relationship set (Course) has_prereqs inverse Course:lis_praeraq_for;
relationship set (Course) is prereq for inverse Coursechas preregs:
relationship list (CourseOffering) offers inverse CourseOffering::belongs_fo;

shart enrclmentl,).

17

Figure 15-2: ODL Schema for university database (cont.)

class Studant |
[extent students)
attribute string nams;
attribute Date dataOfBirth,
attribute Address address;
attribute Phone phone;
relationship set (CourseOffering) takes inverse CourseOftering: taken_by;
short agel);
float gpal):
boolean register_for(string crse, short sec, siring term);
|-
class CourseOffering | relationship indicates N:1 relationship to an

[extent courseofferings) instance of the other class
attribute string tarm:
attribute enum =section {1, 2, 3. 4, &, 8, 7, 8);
relati : .
relationship Course belongs_to inverse Course:offers;
EROrt enrcimenti, 1,

7

class Course |

[extent courses)
attribute string crse_code;
attribute string crse_title;
attribute short cradit_hrs;
relationship set (Course) has_prereqs inverse Course:lis_praeraq_for;
relationship set (Course) is_prereq_for inverse Course:has_prereqgs;
relationship list (CourseOffering) offers inverse CourseOffering::belongs_fo;
shart enrollment();

18

FigllI'E 15-3a UML class diagram for an employee project database -
Many-to-many relationship with an association class

Employee . . Project
emp_id | proj_id
name [proj_name
address — priority
salary Assignment begin_date
date_hired completion_date
gender start_date skills_required
skills end_date

hours total_emp_hours()
hire() . .
fire() assign(emp, proj)
add_skill{new_skill)

In order to capture special features of
assignment, this should be converted into
two 1:N relationships

FigUI‘E 15-3b UML class diagram for an employee project database

Many-to-many relationship broken into two one-to-many relationships

Employee

<<PK>> emp_id
name

address) Works on P
salary

date_hired 4 Allocated to
gender
skills

hire()
fire()
add_skill(new_skill)

class Employee {
(extent employees
key emp_id)

Assignment

start_date
end_date
hours

assignlemp, proj)

For P

4 Has

Project

<<PK>> pro_id
proj_name
priority
begin_date
completion_date
skills_required

total_emp_hours()

20

FlgllI'E 15-4 UML class diagram showing employee generalization

Employee

empName
empNumber
address
dateHired

printLabel()

PaN
employee employee employee
Note: type type type o
extends e e s - - - = = = = {disjoint, incomplete}
denotes
subclassing
class HourlyEmployee Hourly Salaried Consultant
extends Employee{ Employee Employee
hourlyRate annualSalary contractNumber
stockOption billingRate
computeWages() contributePension() computeFees()

Figure 15-5: UML class diagram showing student generalization

Student

-

{abstract }

stu_number
name
dateOfBirth
address
phone

calc_tuition()

register_for{crse, sec, term)

{dispint, complete}

Graduate
Student

undergrad_major
gre_score
gmat_score

calc_tuition{)

Takes P . Course
d Taken by Offering
berm
saction
enrollment()

Note: abstract class denotes non-
Instantiable (complete constraint)

abstract class Student{

Undergrad
Student

abstract float calc_tuition();

}

sat_score
act_score

Note: abstract operation denotes no

calc_tution()

method (no implementation) of
calc_tuition at the Student level

22

Creating Object Instances

» Specify a tag that will be the object identifier
- MBA699 course ();

» Initializing attributes:
> Cheryl student (name: “"Cheryl Davis”,
dateOfBirth:4/5/77);
» Initializing multivalued attributes:
- Dan employee (emp_id: 3678, name: “Dan Bellon”,
skills {"Database design”, “O0 Modeling™});
» Establishing links for relationship

> Cheryl student (takes: {OOAD99F, Telecom99F,
Java99F});

23

Querying Objects in the OODB

Object Query Language (OQL)
ODMG standard language
Similar to SQL-92

Some differences:
> Joins use class’s relationship name:
Select x.enrollment from courseofferings x, x.belongs_to y where

y.crse_course = “MBA 664" and x.section = 1
c Using a set in a query
Select emp_id, name from employees where “Database Design” in skills;

v Vv Vv Vv

24

Current ODBMS Products

» Rising popularity due to:
- CAD/CAM applications
- Geographic information systems
> Multimedia
- Web-based applications
> Increasingly complex data types

» Applications of ODBMS

> Bill-of-material

- Telecommunications navigation
- Health care

> Engineering design

> Finance and trading

25

Table 15-1 ODBMS Products

Company Product Website

GemStone Systems GemStone www.gemstone.com
neolLogic NeoAccess neologic.com
Object Design ObjectStore www.odi.com
Obijectivity Objectivity/DB www.objectivity.com
POET Software POET Object Server www.poet.com
Versant Versant ODBMS www.versant.com

Other Links Related to ODBMS Products

Barry & Associates
Doug Barry's The Object Database Handbook
Object database newsgroup

Rick Cattell's The Object Database Standard
ODMG 3.0

Object Database Management Group

Chaudhri and and Zicarl’'s Succeeding with
Object Databases

www.odbmsfacts.com
wiley.com
news://comp.databases.object
www.mkp.com

www.odmg.org
www.wiley.com/compbooks/chaudhri

26

